

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 781.278.3700 www.gza.com

December 21, 2015

GZA File No: 01.00171521.42

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup Northeast Regional Office 205B Lowell Street Wilmington, Massachusetts 01887

Re: Release Abatement Measure Status Report No. 1 and

RAM Plan Modification

Pre-Construction Remediation Activities

(Former) Everett Staging Yard

1 Horizon Way

Everett, Massachusetts

Release Tracking Number 3-13341

To Whom It May Concern:

GZA GeoEnvironmental, Inc. (GZA), on behalf of Wynn MA, LLC (Wynn MA), has prepared this Release Abatement Measure (RAM) Status Report to document the status of pre-construction RAM activities completed as of November 14, 2015 on the land-side portion of the above-referenced Disposal Site (the Site). In addition, we have included a RAM Plan Modification to clarify procedures for the handling of excavated material, and to allow for exploratory test pits in support of future utility relocation.

EXECUTIVE SUMMARY

Soil, groundwater, and sediment at the Site have been contaminated by historic activities, including the former use of the Site as a chemical manufacturing facility. On August 18, 2015, Wynn MA and GZA submitted a RAM Plan documenting Massachusetts Contingency Plan (MCP) Response Actions to be completed prior to the redevelopment of the Site. The objective of the activities described in the RAM Plan is to reduce the risks associated with soil and groundwater contamination in the three areas of the Site previously identified as the A-5 Area, the CES-2 Area, and the Low pH Area. Soil containing elevated concentrations of arsenic and lead in the A-5 Area will be excavated and disposed of off-Site. Elevated concentrations of arsenic in soil and groundwater in the CES-2 Area will be addressed through the excavation and disposal of soil off-Site. Soil and groundwater in the Low pH Area will be treated using in-situ solidification/stabilization (ISS) to both reduce the ability of groundwater to flow through the Area, and raise the pH to limit the further mobilization of metals from soil to groundwater.

RAM activities performed as of November 14, 2015, include:

- Mobilization of necessary equipment and personnel:
- Installation of the perimeter air monitoring system;
- Installation of sediment and erosion controls;
- Establishment of groundwater recharge, materials management and decontamination areas;
- Initiation of pre-trenching for obstruction removal in areas where sheet piles will be installed;
- Initiation of sheet pile installation; and A limited volume of soil excavation.

Page | 2

Proactive by Design

As requested by MassDEP, this submittal also includes a RAM Plan Modification to clarify the procedures for handling excavated material, and to allow for exploratory test pits in support of future utility relocations. These modifications do not substantially alter or expand the previous RAM Plan.

INTRODUCTION

A Site Locus Map is presented as Figure 1; an Exploration Location Plan is included as Figure 2; and the areas that are subject to the provisions of the RAM Plan are delineated on Figure 3. This RAM Status Report has been prepared in accordance with 310 CMR 40.0445 of the MCP, and with the Limitations in Appendix A. This RAM Status Report will be submitted electronically through the Massachusetts Department of Environmental Protection's (MassDEP's) eDEP online filing system. A copy of the RAM Transmittal Form BWSC-106 is included in Appendix B.

DESCRIPTION OF RELEASE, SITE CONDITIONS AND SURROUNDING RECEPTORS

The following sections provide a description of the Site and surrounding area conditions and the Site's regulatory history, including a description of the release being addressed by the RAM.

SITE AND SURROUNDING AREA CONDITIONS

The RAM activities address certain conditions on the land-side portion of the Site, which includes approximately 25 acres of land within the City of Everett (Figure 1). The latitude and longitude for the approximate center of the land-side portion of the Site are 42.395 degrees north and 71.069 degrees west, respectively. The Universal Transverse Mercator (UTM) coordinates are 4,695,683 meters north and 329,684 meters east. Access to the land-side portion of the Site is limited by the presence of a chain-link fence with two gates: one gate is in the eastern portion of the Site, along Horizon Way, and the second gate is located on the northern portion of the Site across an extension of Horizon Way. The ground surface at the Site is generally bituminous pavement (center), unpaved, or compacted coarse gravel. The ground surface at the land-side portion of the Site is generally flat with a gentle slope toward the southwest. Based on an April 2013 survey prepared by Harry R. Feldman, Inc. (Professional Land Surveyors), ground surface elevations on the land-side portion of the Site range from approximately 8 to 13 feet NAVD88.

The Site is adjoined to the northeast by a vehicle maintenance and repair facility operated by the Massachusetts Bay Transportation Authority (MBTA); to the southeast by properties along Alford Street, including a vacant commercial building and facilities operated by the Boston Water and Sewer Commission (BWSC) and the Massachusetts Water Resources Authority (MWRA); to the southwest by the Mystic River; and to the northwest by railroad tracks for the MBTA Commuter Rail, beyond which are several large commercial/retail buildings associated with the Gateway Center.

The Site is located within the Boston Basin, a regional depression of bedrock consisting primarily of Cambridge Argillite, a partially metamorphosed siltstone. Site subsurface conditions generally consist of fill over a variable sequence of naturally deposited organics, sand and gravel, and silty clay over weathered rock and bedrock. Filling over naturally deposited materials occurred in the area of the Site from the late 1800s through the early 1960s. More recent naturally deposited sediments along the shoreline include sand, silt, and organics.

Depth to groundwater ranges from approximately 4 to 10 feet. Groundwater at the Site flows generally toward the east on the southern portion of the Site and generally toward the south on the northern portion of the Site.

According to a Massachusetts Geographic Information System (MassGIS) map, the Site is not located in or within 500 feet of a Zone II public water supply, a potentially productive aquifer, a Zone A surface water body, an Interim Wellhead Protection Area, a protected wetlands habitat, or an Area of Critical Environmental Concern. Protected open space associated with Gateway Park is located approximately 400 feet to the northwest of the Site.

SITE AND REGULATORY HISTORY

Investigations conducted between 1995 and the present have identified several contaminants in soil, groundwater, and sediments at the Disposal Site, including metals, volatile organic compounds (VOCs), volatile petroleum hydrocarbon (VPH) fractions and target analytes, semi-volatile organic compounds (SVOCs), extractable petroleum hydrocarbon (EPH) fractions and target analytes, and polychlorinated biphenyls (PCBs). The sources of contamination at the Disposal Site include past industrial operations, leakage from a former aboveground storage tank (AST), and the placement of contaminated fill. According to historic reports, the Site was occupied by the Cochrane Chemical Company, the Merrimac Chemical Company and the Monsanto Chemical Company from the late 1800s until the late 1960s. The buildings on the land-side portion of the Site were razed in the 1970s. The land-side portion of the Site has been used primarily as a material storage and staging yard since the mid-1990s, when rock and fine-grained sediment ("tunnel muck") from the construction of the Deer Island Outfall was placed on it in a 1- to 7-foot thick layer. There are currently no buildings at the Site.

In 1995, Consulting Engineers and Scientists, Inc. (CES) of Lakeville, Massachusetts, performed a limited subsurface investigation at the Site prior to it being used as the tunnel muck stockpile area. Arsenic and lead concentrations in soil samples collected during the investigation exceeded the applicable MCP Reportable Concentrations (RCS-2). On January 18, 1996, O'Donnell Sand and Gravel ("O'Donnell"), the property owner at the time, submitted a Release Notification Form (RNF) to MassDEP, and MassDEP assigned RTN 3-13341 to the release. Later in 1996, the excavated tunnel muck and rock were stockpiled and/or spread across the upland portion of the Site. In mid-1999, tunnel muck from the Site was used to cap a separate portion of the former Monsanto property, located across the railroad tracks and west of the Site, as part of the construction of the Gateway Center Mall, but a 1- to 7-foot thick layer of the tunnel muck remains at the Site.

In December 1996, CES conducted a Phase I Initial Site Investigation (ISI). Arsenic and lead concentrations detected in soil samples exceeded the applicable RCS-2 standards, and dissolved arsenic and lead detected in groundwater samples exceeded the RCGW-2 standard. In January 1997, on behalf of O'Donnell, CES submitted a Phase I ISI and Tier Classification (Phase I report) to MassDEP. The Disposal Site was classified as a Tier II Disposal Site. The Phase I report identified arsenic, lead, and low pH as contaminants of concern (COCs). O'Donnell submitted a Phase II Extension Request to MassDEP in February 1999 and sold the property to Mystic Landing, LLC ("Mystic Landing") in 2001.

In 2001, on behalf of Mystic Landing, Rizzo Associates (a predecessor to Tetra Tech Rizzo, Inc. of Framingham, Massachusetts ("Tetra Tech Rizzo")) performed a limited subsurface investigation at the Site, including the collection and analysis of soil and groundwater samples. The findings of the subsurface investigation were similar to CES's findings. Between 2005 and 2007, Tetra Tech Rizzo

Page | 4

Proactive by Design

conducted additional subsurface investigations, including the collection and analysis of soil, groundwater and sediment samples. The results of these investigations were also generally consistent with those from previous sampling rounds.

In June and July 2007, Williams Environmental, Inc. (Williams) conducted a supplemental subsurface investigation at the Site, including the excavation of 40 test pits and the collection of soil, groundwater and sediment samples. As with the results for previous analyses of environmental media conducted at the Site, lead and arsenic were the contaminants detected at the highest concentrations and with the greatest frequency.

In December 2007, on behalf of Mystic Landing, Tetra Tech Rizzo submitted a Phase II Comprehensive Site Assessment (Phase II CSA) and Tier II Extension Request to MassDEP. The Human Health Risk Assessment included in Tetra Tech Rizzo's CSA concluded that there was No Significant Risk (NSR) and No Substantial Hazard associated with the current use of the Site as a construction material storage yard or for similar uses that did not disturb the surficial layer of tunnel muck.

FBT Everett Realty, LLC (FBT) purchased the Site from Mystic Landing in October 2009. On February 11, 2010, GEI Consultants, Inc. (GEI) submitted an Eligible Person Certification and Revised Tier Classification Submittal to MassDEP on behalf of FBT. The Disposal Site remained a Tier II Disposal Site based on the Revised Tier Classification Submittal and, pursuant to 310 CMR 40.0570, the deadlines for conducting response actions at the Disposal Site were re-established.

In February 2012, GEI submitted a Phase II CSA based only on data previously developed by others because GEI's access to the Site was reportedly denied by the Site occupant. As part of the Phase II CSA, GEI conducted a Method 3 Risk Characterization which concluded that a Condition of NSR to human health existed at the Site for most of the then current uses of the Site, but that NSR could not be demonstrated for foreseeable future Site uses. NSR could not be demonstrated for future commercial workers or future visitors exposed to Site-wide soils, for future construction workers exposed to Site-wide soils or shallow groundwater, or for utility workers exposed to soil, shallow groundwater, or ambient air within a potential utility trench in a specific area near the northern corner of the Site.

Because of the delay in obtaining access to the Site, FBT filed a Notification of Delay with MassDEP, requesting that the deadline for the Phase III – Remedial Action Plan (RAP) be extended from February 2013 to June 2013, and that the deadline for the Phase IV – Remedy Implementation Plan (RIP) be extended from February 2014 to June 2014. FBT subsequently filed a second Notification of Delay requesting that the Phase III RAP deadline be extended to September 2013, and the Phase IV deadline be extended to June 11, 2015.

GEI conducted additional soil and groundwater investigations in December 2012 and March 2013. These investigations included the installation of a series of soil borings and monitoring wells on the land-side portion of the Site, and the collection and analysis of soil and groundwater samples. The results of the additional investigations were generally consistent with those previously documented. GEI also conducted a bench scale evaluation of in-situ solidification/stabilization (ISS) of soils as a remedial alternative for certain areas of the Site. On August 30, 2013, FBT filed a Phase III RAP for the Site outlining the selected Remedial Action Alternatives (RAAs). The Phase III RAP identified three areas of concern to be addressed to reach a Permanent Solution under the MCP on the land-side portion of the Site. These areas are depicted on Figure 3, and are described as follows:

- A-5 Area: The A-5 area is situated in the northern portion of the Site in the vicinity of previous exploration location A-5, where elevated lead and arsenic concentrations were detected in a soil sample obtained in 2007. No specific source for the elevated arsenic and lead levels has been identified, and the impacts appear to be random and related to fill material. Groundwater samples collected from this area have not indicated concentrations of metals above the applicable Method 1 GW-3 Standards.
- CES-2 Area: The CES 2 area is situated in the northern portion of the peninsula, in the vicinity of previous exploration CES-2. Elevated concentrations of arsenic have been detected in both soil and groundwater in this area. Unlike the Low pH area (see below), soil and groundwater pH levels in the CES-2 area are relatively neutral.
- Low pH Area: The Low pH Area includes the southern corner of the peninsula where the pH has been measured to be at or below 4. As indicated in the Phase III RAP, a plot of dissolved lead concentrations against pH indicates a strong correlation between pH levels below 4 and dissolved lead concentrations above the Upper Concentration Limited (UCL).

On January 2, 2015, Wynn MA acquired the portion of the Site in Everett, Massachusetts. On February 5, 2015, Wynn MA filed an Eligible Person Submittal and a Revised Tier II Classification with MassDEP for RTN 3-13341. The Eligible Person Submittal outlined plans to address the three areas described above, along with future land-side remediation coincident with redevelopment, as part of RAM Plans.

On August 18, 2015, Wynn MA and GZA submitted a RAM Plan documenting proposed MCP Response Actions to be completed in the A-5, CES-2 and Low pH Areas.

RELEASE ABATEMENT MEASURE STATUS REPORT

The following sections of this document are intended to address the specific requirements for RAM Status Reports as outlined in the MCP at 310 CMR 40.0445 (2) (a) through (e).

(a) The Status of Response Actions

Mobilization of equipment and material to the Site began during the week of October 19, 2015. Site preparation activities began later that week with the removal of brush and other debris from the remediation, materials management and decontamination pad areas. The AirLogics perimeter air monitoring system was installed on October 27, 2015, prior to intrusive activities. Approximate locations of air monitoring stations are depicted on Figure 3. Additional details concerning AirLogics are presented below.

Erosion and sedimentation controls, including staked straw bales and silt fencing, were placed along the top of Coastal Bank in the Low pH and CES-2 areas in accordance with the Wetlands Protection Act (WPA) Order of Conditions issued authorizing these RAM activities (MassDEP File # 022-0095).

During the emplacement of erosion and sediment controls along the southern tip of the peninsula in the Low pH Area, it became apparent that recent erosion of the shoreline had moved the top of Coastal Bank inland from the location previously mapped. The alignment of the erosion and sedimentation

controls was moved inland approximately 5 feet to be consistent with the top of Coastal Bank as observed in the field.

Observations of the prominence at the northern end of the Low pH Area, along the southeastern shoreline of the peninsula, indicate that this feature is a former pier constructed of timber poles, likely situated on a concrete base (see pre-trenching discussion below). Given the nature of this structure, it will be excluded from the ISS area. However, this feature will be removed during subsequent construction activities.

The final extent of remediation in the Low pH Area will be documented in the next RAM Status Report or RAM Completion Report, pending the installation of the sheet pile wall and ISS completion. These two areas are shown on Figure 3.

Groundwater recharge areas for future dewatering discharge have been established for the CES-2 Area along the northwestern property boundary, and for the A-5 area in the northeastern corner of the property. These areas were constructed as shallow, open excavations. The CES-2 recharge area measures approximately 280 feet (west to east) by 60 feet (north to south); the A-5 recharge area measures approximately 125 feet (west to east) by 50 feet (north to south). In areas where the trench excavation penetrated the tunnel muck to expose potentially contaminated soils below, several inches of tunnel muck was spread across the floor of the excavation to serve as a barrier to direct contact with the underlying soils.

Materials management areas (MMAs) for the temporary storage of excavated soils were installed on the peninsula between the ISS and CES-2 Areas, and in the northern portion of the Site south of the A-5 Area. These two areas are shown on Figure 3.

Pre-trenching for sheet pile installation began during the week of November 9. On that day, an abandoned steel underground storage tank (UST) was uncovered during pre-trenching for the CES-2 excavation sheet pile wall. The UST measured approximately 6 feet by 27 feet, with an estimated volume of 5,000 gallons. The tank was encountered at a depth of approximately 6.5 feet below the existing ground surface, beneath an approximately 1-foot thick concrete slab. The UST appeared to be filled with a mixture of soil and groundwater that exhibited a petroleum-like odor. Representative samples of the soil and groundwater from within the UST were obtained and submitted to ESS Laboratory (ESS) of Cranston, Rhode Island for analysis of VOCs, SVOCs, pH, total petroleum hydrocarbons (TPH), polychlorinated biphenyls (PCBs), MCP 14 metals, conductivity and/or reactivity. The analytical report is included as Appendix C. The Everett Fire Department has been notified of the UST, which will be removed in accordance with applicable regulations prior to sheet pile installation.

In addition, multiple obstructions have been removed from both the CES-2 Area and Low pH Area during the pre-trenching activities. These obstructions include abandoned cast-iron utilities, concrete pile caps and other concrete remnants, and timber members or piles. The obstructions were stockpiled in the peninsula MMA for future characterization and off-Site disposal. As previously noted, a significant concrete structure was observed beneath and adjacent to the prominence at the northern tip of the Low pH Area; this feature is likely the base for a crane formerly situated along the shoreline.

Installation of sheet piling was initiated in the CES-2 Area on November 11, 2015.

On November 12, 2015, excavation of the A-5 Area was initiated. Excavated material from this area is stockpiled within the northern MMA pending treatment for Toxicity Characteristic Leaching Procedure (TCLP) lead stabilization and off-Site disposal.

(b) Any Significant New Site Information or Data

Significant new Site information or data was not generated during the current reporting period; however, the following section summarizes monitoring data collected during the reporting period.

Perimeter Air Monitoring Data

Perimeter dust and VOC monitoring is being conducted on a continuous, 24-hour basis. The automated perimeter air monitoring system consists of eight individual AirLogics SolarLite monitoring stations with associated analytical instrumentation, a meteorological station, a computer control system, and an alarm system linked to the analytical instrumentation by an integrated communication/telemetry package. The meteorological station is used to identify which stations are upwind, downwind, or crosswind of Site activities on a real-time basis.

The data collected by the AirLogics system is used to evaluate compliance with the Site perimeter limits for total VOCs and dust developed as part of the RAM Plan, and to identify any need to suspend or modify remediation activities as a result of RAM-related air emissions.

The analytical instrumentation within each perimeter station consists of a photoionization detector (PID) for the measurement of total VOCs (TVOCs), and a respirable particulate meter for the measurement of dust as a surrogate for polynuclear aromatic hydrocarbons (PAHs) and metals. The PIDs, along with the Respirable Particulate Meters, are housed in weather-tight enclosures. The system operates on solar power, and is configured with on-board battery backup.

The system has been configured to generate 15-minute time-weighted averages of TVOC and particulate levels. The system has been programmed based on action levels for TVOCs of 1 part per million by volume (ppmv) and for Respirable Particulate Matter (up to 10 micrometers in size (PM10)) of either 75 μ g/m3 over upwind background (for the CES-2 Area) or 150 μ g/m3 over upwind background (for the A-5 and Low pH Areas), along with warning level alarms set at lower thresholds designed to provide project personnel with an advance warning of potential air quality issues.

Weekly summary sheets for the weeks beginning November 2 and November 9, 2015, are included in Appendix D. No action levels were exceeded for either TVOCs or PM10 during the monitoring period.

CES-2 Baseline Groundwater Recharge Area Sampling

In preparation for the eventual discharge of treated groundwater to the CES-2 groundwater recharge area, baseline groundwater sampling of wells in the vicinity of the recharge area was conducted on October 1, 2015. Wells W-4, RIZ-105, B/MW-207 and RIZ-5 were sampled using USEPA low stress (low flow) sampling. Samples were submitted to ESS for analysis for dissolved RCRA-8 metals. Analytical results are included in Appendix E. Future groundwater samples from the vicinity of the recharge trench will be collected during active dewatering, and results will be compared to the baseline sampling data.

(c) Details of and/or Plans for the Management of Remediation Waste, Remedial Wastewater and/or Remedial Additives

The following sections present plans for the management of remediation waste, remedial wastewater and remedial additives.

Remediation Waste

Remediation waste generated during the current monitoring period is limited to a small volume of soil associated with the A-5 Area excavation. Based on the data from the initial investigations at the Site, these soils contain lead levels exceeding the Toxicity Characteristic Leaching Procedure (TCLP) criterion, and will require on-Site treatment prior to transport and disposal off-Site. Specific details regarding the treatment, confirmatory testing and off-Site disposal of these soils will be included in the next RAM Status Report, or the RAM Completion Report.

Groundwater Management

Dewatering effluent will be managed by on-Site treatment and upgradient discharge to an on-Site recharge area or by off-Site transport and disposal. Dewatering is anticipated for the CES-2 Area, and may also be required, but is not expected, for the A-5 Area. No dewatering is anticipated for the Low pH Area.

Dewatering effluent from the CES-2 Area that is recharged on-Site will be treated, as necessary, to meet MCP GW-3 standards. The effluent discharged to the on-Site recharge area will be sampled and tested for dissolved lead, dissolved arsenic, and pH on approximately day 1, day 3, day 6, and weekly for the first month of discharge, and at approximately 30-day intervals after that. In accordance with the MCP (310 CMR 40.0045[4][a]&[b]), hydraulic containment of groundwater will be maintained so that the up-gradient discharge of dewatering effluent to the recharge area is contained or recaptured within the boundaries of the Site. As previously noted, baseline groundwater samples for this area were obtained on October 10, 2015. As of November 14, 2015, no dewatering activities had been conducted in the CES-2 Area. Subsequent RAM Status Reports and/or the RAM Completion Report will included a Remedial Monitoring Report for the operation of the groundwater treatment system associated with dewatering of the CES-2 Area in accordance with 310 CMR 40.0445(5).

<u>Application of Remedial Additives</u>

The ISS process to be employed at the Site will include the application of Portland cement, which can be considered a Remedial Additive, and since the Mystic River adjoins the Site to the southwest, as required by 310 CMR 40.0046(3)(a)(4) and 40.0046(3)(b), the RAM Plan included a written plan for the application of Remedial Additives within 50 feet of the Mystic River. As of November 14, 2015, no Remedial Additives had been applied. Subsequent RAM Status Reports and/or the RAM Completion Report will included a Remedial Monitoring Report for the application of remedial additives In accordance with 310 CMR 40.0445(5).

(d) Any other information that the Department during its review and evaluation of a Status Report determines to be necessary to complete said Status Report, in view of Site specific circumstances and conditions

At the request of Mr. Andrew Clark of MassDEP, this status report includes a RAM Plan Modification (see below) to clarify soil management procedures during remediation.

(e) An LSP Opinion as to whether the Release Abatement Measure is being conducted in conformance with the Release Abatement Measure Plan and any conditions of approval established by the Department

The LSP Opinion concerning whether the Release Abatement Measure is being conducted in conformance with the RAM Plan is included on the Transmittal Form (BWSC106) attached to this RAM Status Report as Appendix A.

RAM PLAN MODIFICATION

At the request of Mr. Andrew Clark of MassDEP, this RAM Plan Modification has been prepared to clarify procedures in place for the management of contaminated soils from the CES-2 Area, Low pH Area and groundwater recharge areas, and to provide an estimate of the volume of contaminated soil that will be excavated as part of the RAM activities in these areas. Information concerning soil handling in the noted remediation areas, as well as the groundwater recharge areas, is presented in the sections below. In addition, this RAM Plan Modification includes provisions for exploratory test pits to assess the status and location of existing underground utilities at the Site. As the modifications listed below do not substantially alter or expand the previous RAM Plan, in accordance with 310 CMR 40.1405(6)(e)(2) this submittal is not subject to an additional comment period.

<u>CES-2 Area</u>: The remedial objectives for the CES-2 Area are the removal of potential source materials, the reduction of groundwater concentrations to below MCP upper concentration limits (UCLs), and the reduction of risk to future construction workers. The target remediation zone in the CES-2 Area is from 6 to 15 feet below ground surface (bgs); this remediation zone was defined as part of the Phase II and Phase III activities conducted by GEI Consultants, Inc. The concentrations of arsenic, which is the primary risk driver in the CES-2 Area, show an increase with depth, with the most heavily impacted zone located from 6 to 15 feet bgs. Included in this zone were concentrations of arsenic above the acute risk concentration threshold of 2,684 mg/kg.

As discussed in the RAM Plan, overburden material from the top 6 feet of the CES-2 Area was excavated and stockpiled on-Site for later re-use. Soils from the upper 6 feet are characterized by samples from previous samples S-26 (0-0.5 feet), BOR-12 (0-3 feet), CES-2-A (0-4 feet), CES-2-B (0-4 feet), and CES-2-D (0-4 feet), and at least in part by samples CES-2-A (4-8 feet), CES-2-B (4-8 feet), CES-2-C (4-8 feet) and CES-2-D (4-8 feet). The average arsenic concentration in these listed samples is 80.9 mg/kg, vs. an average arsenic concentration in the target remediation zone of greater than 2,000 mg/kg. However, the concentration of arsenic in the tunnel muck, as represented by samples S-26 (0-0.5 feet) and BOR-12 (0-3 feet), is 13.9 mg/kg.

During the excavation of the overburden material from the CES-2 Area, approximately 1,900 cubic yards of tunnel muck were segregated from the underlying fill material based on visual observation

and stockpiled within the MMA on the peninsula. Approximately 3,200 cubic yards of the fill material from the interval between the bottom of the tunnel muck and the top of the target remediation zone was transported to the MMA to the east of the groundwater recharge area, but this material was placed on 20-mil polyethylene sheeting and covered with the 10-mil polyethylene sheeting. These materials will be reused as backfill within the CES-2 Area upon completion of excavation of the target remediation zone, unless determined to be geotechnically unsuitable. During backfilling operations, the underlying fill materials will be placed within the excavation first, and will be covered with tunnel muck or clean borrow to an elevation consistent with pre-remediation grades. In the event that the underlying fill material is observed to be unstable during backfilling, tunnel muck may be placed in layers to improve stability.

Approximately 4,500 cubic yards of impacted soil from the CES-2 target remediation zone will be excavated for off-Site disposal. These soils have been precharacterized through a soil boring program completed prior to excavation; precharacterization data for the target remediation zone is included on Table 1. Analytical results indicated exceedances of soil disposal facility acceptance criteria for TCLP lead and/or arsenic in certain samples. Excavated soil from the CES-2 target remediation zone requiring on-Site treatment prior to transport and disposal off-Site will be transported to the MMA for treatment and confirmatory sampling. Treatment will consist of the application of stabilizing reagents to stockpiled soils and mixing of those soils in individual cells of no great than approximately 350 cubic vards.

After mixing, representative samples of the materials will be collected for additional TCLP analysis. Should TCLP concentrations remain above disposal facility acceptance criteria, the materials will be retreated. _Following the receipt of acceptable post-treatment TCLP analytical results, these soils will be transported off-Site for disposal. Soils from the CES-2 target remediation zone not requiring on-Site treatment will either be live-loaded, or temporarily stored in the MMA before being transported off-Site for disposal. All soil from the CES-2 target remediation zone stored on-Site will be placed on 20-mil polyethylene sheeting and covered with the 10-mil polyethylene sheeting unless actively being handled or treated.

Low pH Area: The remedial objectives for the Low pH Area are treatment of potential source materials, reduction of groundwater concentrations to below MCP UCLs, and adjustment of groundwater pH to greater than approximately 4. The target remediation zone in the Low pH Area is from 4 to 15 feet bgs. Derivation of the target remediation zone was completed as part of Phase II and Phase III activities conducted by GEI, as well as additional work completed by GZA on behalf of Wynn and documented in the RAM Plan.

As the main concern within the Low pH Area was groundwater, overburden material was removed to limit ISS of unsaturated materials. As discussed in the RAM Plan, overburden material from the top 4 feet of the Low pH Area was excavated and stockpiled on-Site for later re-use as backfill material. Soils from the upper 4 feet are characterized by samples from previous samples S-15 (0-0.5'), S-16 (0-0.5'), S-17 (0-0.5'), S-19 (0-0.5'), B217 (0-2'), BOR-11 (0-3'), SHORE-3 (0-3'), SHORE-4 (0-3'), SHORE-8 (0-3'), SHORE-9 (0-3'), C-14 (4') and at least in part by sample TP301 (0-5'). The average arsenic and lead concentrations in these soils are 19 mg/kg and 218 mg/kg, respectively; the average concentrations of arsenic and lead in the tunnel muck, as represented by samples S-15 (0-0.5'), S-16 (0-0.5'), S-17 (0-0.5'), S-19 (0-0.5'), B217 (0-2'), BOR-11 (0-3') and SHORE-3 (0-3'), are 6.5 mg/kg and 69.2 mg/kg, respectively.

Page | 11

Proactive by Design

During the excavation of the overburden material from the Low pH Area, approximately 2,500 cubic yards of tunnel muck were segregated from the underlying fill material based on visual observation and stockpiled within the MMA on the peninsula. Approximately 4,500 cubic yards of the fill material below the tunnel muck was also transported to the MMA on the peninsula, but this material was placed on 20-mil polyethylene sheeting and covered with 10-mil polyethylene sheeting. These materials will be reused as backfill within the Low pH Area or CES-2 Area upon completion of ISS within the target remediation zone, unless determined to be geotechnically unsuitable. During backfilling operations, the underlying fill materials will be placed within the excavation first, and will be covered with tunnel muck or clean borrow to an elevation consistent with pre-remediation grades. Approximately 19,000 cubic yards of soil from the Low pH Area target remediation zone will be treated using ISS, as described in the RAM Plan.

Groundwater Recharge Areas: As documented above, groundwater recharge areas for future dewatering discharge have been established for the CES-2 Area along the northwestern property boundary, and for the A-5 area in the northeastern corner of the property. These areas were constructed as shallow, open trenches. The CES-2 recharge area measures approximately 280 feet (west to east) by 60 feet (north to south); the A-5 recharge area measures approximately 125 feet (west to east) by 50 feet (north to south). The total volume of excavated soil from the groundwater recharge areas is estimated to be approximately 2,600 cubic yards. The excavated materials were stockpiled immediately adjacent to the groundwater recharge trenches.

The intent for these trenches was for them to be situated completely within the tunnel muck; however, upon excavation, it was observed that the thickness of tunnel muck was more variable than anticipated, and underlying fill materials were encountered. In areas where the trench excavation penetrated the tunnel muck to expose potentially contaminated soils below, several inches of tunnel muck was spread back across the floor of the excavation to serve as a barrier to direct contact with the underlying soils. As noted by MassDEP during Site visits, stockpiled materials in several areas exhibited signs of the comingling of tunnel muck with underlying fill materials. In response, all stockpiles associated with the groundwater recharge trenches were covered with polyethylene sheeting. Upon completion of remediation activities requiring dewatering, the trenches will be backfilled using the stockpiled materials. During backfilling operations, the underlying fill materials, including those comingled with tunnel muck, will be placed within the excavation first, and will be covered with tunnel muck or clean borrow to an elevation consistent with pre-remediation grades. Following backfilling operations, a visual survey of the area will be conducted to observe for signs of underlying fill material at the ground surface. Should visual evidence suggest that fill material has been emplaced at the surface, the material will either be excavated for characterization and off-Site disposal, or covered with additional clean material.

GZA notes that the groundwater recharge areas are within the footprint of the proposed future parking garage, and will therefore be re-excavated during construction. These materials will ultimately be disposed of off-Site. These future activities will be documented in a forthcoming RAM Plan for construction. This second RAM Plan will also outline future plans for the peninsula, including both the CES-2 Area and Low pH Area. Upon completion of construction activities, these areas will be covered, either with clean fill and landscaping or pavement, walkways or other impervious surfaces to reduce the potential for exposure to underlying residual contamination.

<u>Underground Utility Test Pits</u>: In order to assess the location and condition of certain underground utility lines at the Site, exploratory test pits will be conducted. During the excavation of these test pits,

Page | 12

Proactive by Design

tunnel muck, if present, will be segregated from underlying fill materials based on visual observations. The underlying fill materials will then be stockpiled on polyethylene sheeting immediately adjacent to the excavation. Should dewatering be required, the water will be collected for processing through the existing groundwater treatment system. Upon completion of each test pit, the excavation will be backfilled, with soil emplaced at the approximate depth from which it was originally removed.

We trust this information suits your needs. Please feel free to contact the undersigned with any questions or concerns.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

David E. Leone

Senior Project Manager

Albert J. Ricciardelli Consultant/Reviewer

Lawrence Feldman, LSP

Senior Principal

Attachments:

Table 1 Precharacterization Data

Figure 1 Site Locus Figure 2 Site Plan

Figure 3 Proposed Pre-Construction Release Abatement Measure

(RAM) Remediation Areas

Appendix A Limitations

Appendix B Transmittal Form BWSC106
Appendix C UST Laboratory Analytical Results
Appendix D AirLogics Weekly Reports

Appendix E Groundwater Laboratory Analytical Data

TABLE

								CES-2 Area							
Sample Date	02/23/2015	02/23/2015	02/23/2015	02/23/2015	02/23/2015	02/23/2015	02/23/2015	02/23/2015	02/23/2015	02/23/2015	02/23/2015	02/23/2015	02/27/2015	02/27/2015	02/27/2015
Sample ID Sample Depth	GZ-301 6ft-10ft 6ft - 10ft	GZ-301 10ft-15ft 10ft - 15ft	GZ-302 6ft-10ft 6ft - 10ft	GZ-302 10ft-15ft 10ft - 15ft	GZ-303 6ft-10ft 6ft - 10ft	GZ-303 10ft-15ft 10ft - 15ft	GZ-304 6ft-10ft 6ft - 10ft	GZ-304 10ft-15ft 10ft - 15ft	GZ-305 6ft-10ft 6ft - 10ft	GZ-305 10ft-15ft 10ft - 15ft	GZ-306 6ft-10ft 6ft - 10ft	GZ-306 10ft-15ft 10ft - 15ft	GZ-307 6ft-10ft 6ft - 10ft	GZ-307 10ft-15ft 10ft - 15ft	GZ-308 6ft-10ft 6ft - 10ft
8260 Volatile Organic Compounds (low level)															
Total VOCs	ND	ND	ND	0.023	0.0403	0.102	0.0974	0.1537	0.0701	0.0825	0.1244	0.0611	ND	0.0305	0.0403
80260B Volatile Organic Compounds (methanol)															
Total VOCs	_	_	0.476	_	_	-		_	_			-	_	_	_
Method 8270 Semi-Volatile Organic Compounds (SVOCs)															
Total SVOCs	ND	ND	1.09												
8100M Total Petroleum Hydrocarbons															
Total Petroleum Hydrocarbons Total Petroleum Hydrocarbons	<43.7	<50.7	<44.3	<49.3	181	133	2410	117	<48.2	<64.9	<47.2	76.4	<48.5	71.1	164
Total Petroleum Hydrocarbons	C43.7	430.7	444.3	<49.5	161	133	2410	117	<40.2	<04.5	\$47.Z	70.4	¥40.5	71.1	104
8082A Polychlorinated Biphenyls (PCBs)															
Total PCBs	ND	ND	ND	0.354	ND										
8151A Herbicides (via gas chromatography)															
2,4,5-T 2,4-D	<0.046 <0.23	<0.057 <0.29	<0.044	<0.057 <0.28	<0.045	<0.057 <0.28	<0.048 <0.24	<0.067 <0.34	<0.053 <0.26	<0.073 <0.36	<0.046	<0.046 <0.23	<0.10 <0.51	<0.11 <0.54	<0.094 <0.47
2,4-DB	<0.23	<0.021	<0.22 <0.016	<0.021	<0.23 <0.017	<0.28	<0.24	<0.025	<0.26	<0.027	<0.23 <0.017	<0.23	<0.51	<0.041	<0.47
Dalapon	<1.4	<1.7	<1.3	<1.7	<1.4	<1.7	<1.4	<2.0	<1.6	<2.2	<1.4	<1.4	<3.1	<3.2	<2.8
Dicamba	<0.068	<0.086	<0.066	<0.085	<0.068	<0.085	<0.072	<0.10	<0.079	<0.11	<0.069	<0.069	<0.15	<0.16	<0.14
Dichlorprop	<0.15	<0.19	<0.14	<0.18	<0.15	<0.18	<0.16	<0.22	<0.17	<0.24	<0.15	<0.15	<0.33	<0.35	<0.30
Dinoseb	<0.23	<0.29	<0.22	<0.28	<0.23	<0.28	<0.24	<0.34	<0.26	<0.36	<0.23	<0.23	<0.51	<0.54	<0.47
MCPA	<57	<72	<55	<71	<57	<71	<60	<84	<66	<91	<57	<57	<130	<140	<120
MCPP Silvex (2,4,5-TP)	<57 <0.046	<72 <0.057	<55 <0.044	<71 <0.057	<57 <0.045	<71 <0.057	<60 <0.048	<84 <0.067	<66 <0.053	<91 <0.073	<57 <0.046	<57 <0.046	<130 <0.10	<140 <0.11	<120 <0.094
SIIVEX (2,4,3*1F)	<0.040	₹0.057	<0.044	<0.037	<0.045	KU.US7	<0.040	<0.007	<0.033	<0.073	<0.040	<0.040	<0.10	<0.11	<0.094
8081B Organochlorine Pesticides (via gas chromatography)															
4,4'-DDD	<0.0020	<0.0025	<0.0019	<0.0025	<0.0020	<0.0024	<0.0020	<0.0028	<0.0023	<0.0030	<0.0020	<0.0020	<0.0021	<0.0022	<0.0020
4,4'-DDE	<0.0020	<0.0025	<0.0019	<0.0025	<0.0020	<0.0024	<0.0020	<0.0028	<0.0023	<0.0030	<0.0020	<0.0020	<0.0021	<0.0022	<0.0020
4,4'-DDT	<0.0020	<0.0025	<0.0019	<0.0025	<0.0020	<0.0024	<0.0020	<0.0028	<0.0023	<0.0030	<0.0020	<0.0020	<0.0021	<0.0022	<0.0020
Aldrin	<0.0020	<0.0025	<0.0019	<0.0025	<0.0020	<0.0024	<0.0020	<0.0028	<0.0023	<0.0030	<0.0020	<0.0020	<0.0021	<0.0022	<0.0020
alpha-BHC	<0.0020	<0.0025	<0.0019	<0.0025	<0.0020	<0.0024	<0.0020	<0.0028	<0.0023	<0.0030	<0.0020	<0.0020	<0.0021	<0.0022	<0.0020
beta-BHC Chlordane (technical)	<0.0020 <0.020	<0.0025 <0.025	<0.0019 <0.019	<0.0025 <0.025	<0.0020 <0.020	<0.0024 <0.024	<0.0020 <0.020	<0.0028 <0.028	<0.0023 <0.023	<0.0030 <0.030	<0.0020 <0.020	<0.0020 <0.020	<0.0021 <0.021	<0.0022 <0.022	<0.0020 <0.020
delta-BHC	<0.0020	<0.0025	<0.0019	<0.0025	<0.0020	<0.0024	<0.0020	<0.0028	<0.0023	<0.0030	<0.0020	<0.0020	<0.0021	<0.0022	<0.0020
Dieldrin	<0.0020	<0.0025	<0.0019	<0.0025	<0.0020	<0.0024	<0.0020	<0.0028	<0.0023	<0.0030	<0.0020	<0.0020	<0.0021	<0.0022	<0.0020
Endosulfan I	<0.0020	<0.0025	<0.0019	<0.0025	<0.0020	<0.0024	<0.0020	<0.0028	<0.0023	<0.0030	<0.0020	<0.0020	<0.0021	<0.0022	<0.0020
Endosulfan II	<0.0020	<0.0025	<0.0019	<0.0025	<0.0020	<0.0024	<0.0020	<0.0028	<0.0023	<0.0030	<0.0020	<0.0020	<0.0021	<0.0022	<0.0020
Endosulfan sulfate Endrin	<0.0020 <0.0020	<0.0025 <0.0025	<0.0019 <0.0019	<0.0025 <0.0025	<0.0020 <0.0020	<0.0024 <0.0024	<0.0020 <0.0020	<0.0028 <0.0028	<0.0023 <0.0023	<0.0030 <0.0030	<0.0020 <0.0020	<0.0020 <0.0020	<0.0021 <0.0021	<0.0022 <0.0022	<0.0020 <0.0020
Endrin Endrin ketone	<0.0020	<0.0025	<0.0019	<0.0025	<0.0020	<0.0024	<0.0020	<0.0028	<0.0023	<0.0030	<0.0020	<0.0020	<0.0021	<0.0022	<0.0020
gamma-BHC (Lindane)	<0.0020	<0.0025	<0.0019	<0.0025	<0.0020	<0.0024	<0.0020	<0.0028	<0.0023	<0.0030	<0.0020	<0.0020	<0.0021	<0.0022	<0.0020
Heptachlor	<0.0020	<0.0025	<0.0019	<0.0025	<0.0020	<0.0024	<0.0020	<0.0028	<0.0023	<0.0030	<0.0020	<0.0020	<0.0021	<0.0022	<0.0020
Heptachlor epoxide	<0.0020	<0.0025	<0.0019	<0.0025	<0.0020	<0.0024	<0.0020	<0.0028	<0.0023	<0.0030	<0.0020	<0.0020	<0.0021	<0.0022	<0.0020
Hexachlorobenzene	<0.0020	<0.0025	<0.0019	<0.0025	<0.0020	<0.0024	<0.0020	<0.0028	<0.0023	<0.0030	<0.0020	<0.0020	<0.0021	<0.0022	<0.0020
Methoxychlor	<0.0020	<0.0025	<0.0019	<0.0025	<0.0020	<0.0024	<0.0020	<0.0028	<0.0023	<0.0030	<0.0020	<0.0020	<0.0021	<0.0022	<0.0020
Total Metals															
Arsenic	19.6	166	907	707	169	2820	746	269	439	1000	3930	1990	65.9	72.1	138
Barium	46.4	18.7	111	59.6	56.7	740	13.1	25.9	33.3	20.1	42.3	448	41.3	71.8	220
Cadmium	<1.93	<2.14	<13.9	<8.77	<4.78	<13.0	<18.0	<7.65	<5.63	<10.1	130	<11.0	<1.53	28.6	<3.90
Chromium	9.2	16.9	7.61	18	41.3	25.7	31.2	24.1	19.3	19.4	12.7	25.1	11.8	29.4	11
Lead	35	104	121	155	926	3070	41.6	43.1	415	120	100	1600	347	6270	158
Mercury Selenium	0.23 <9.63	0.21 <10.7	0.779 <11.1	0.382 <8.77	2.53 <9.57	1.69 <13.0	3.41 <12.0	0.126 <15.3	16.4 <11.3	0.279 <13.5	0.298 <11.5	1.11 <14.7	0.695 <7.65	0.327 <7.33	1.68 <7.80
Silver	<9.63 <1.93	<10.7 <2.14	<11.1 <2.23	<8.77 <1.75	<9.57 <1.91	<13.0 12.3	<2.39	<15.3 <3.06	<11.3 <2.25	<13.5 <2.69	<11.5 <2.30	3.15	<7.65 <1.53	<7.33 10.4	<7.80 <1.56
	31.00	S2.7.1	12.20	310	31.01	12.0	12.00	30.00	12.20	12.00	12.00	0.10	11.00	10.1	31.00
TCLP Metals															
Arsenic (mg/L)	-	0.692	0.273	1.77	0.439	0.441	3.5	0.228	<0.500	16	<0.500	8.26	-	-	<0.500
Cadmium (mg/L)	-		-		-	-	-	-			<0.0100		-	<0.100	
Lead (mg/L) Mercury (mg/L)	-	0.128	<0.050	1.77	1.02	0.986	-	-	<0.050 <0.00050	0.563	<0.050	0.46	<0.500	0.635	<0.500
Mercury (mg/L) Selenium (mg/L)									<0.00050		-	-			-
Soloman (IIIg/L)						_	_								
Classical Chemistry															
Conductivity (umhos/cm)	1920	1140	6390	1240	1870	790	1900	3240	115	1250	768	200	497	1630	189
Corrosivity (pH)	6.89	7.18	7.09	6.58	7.07	7.34	7.05	7.91	6.26	5.7	6.29	<2.0	7.02	6.76	6.23
Flashpoint (°F)	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200
Reactive Cyanide (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Reactive Sulfide (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0

Notes:

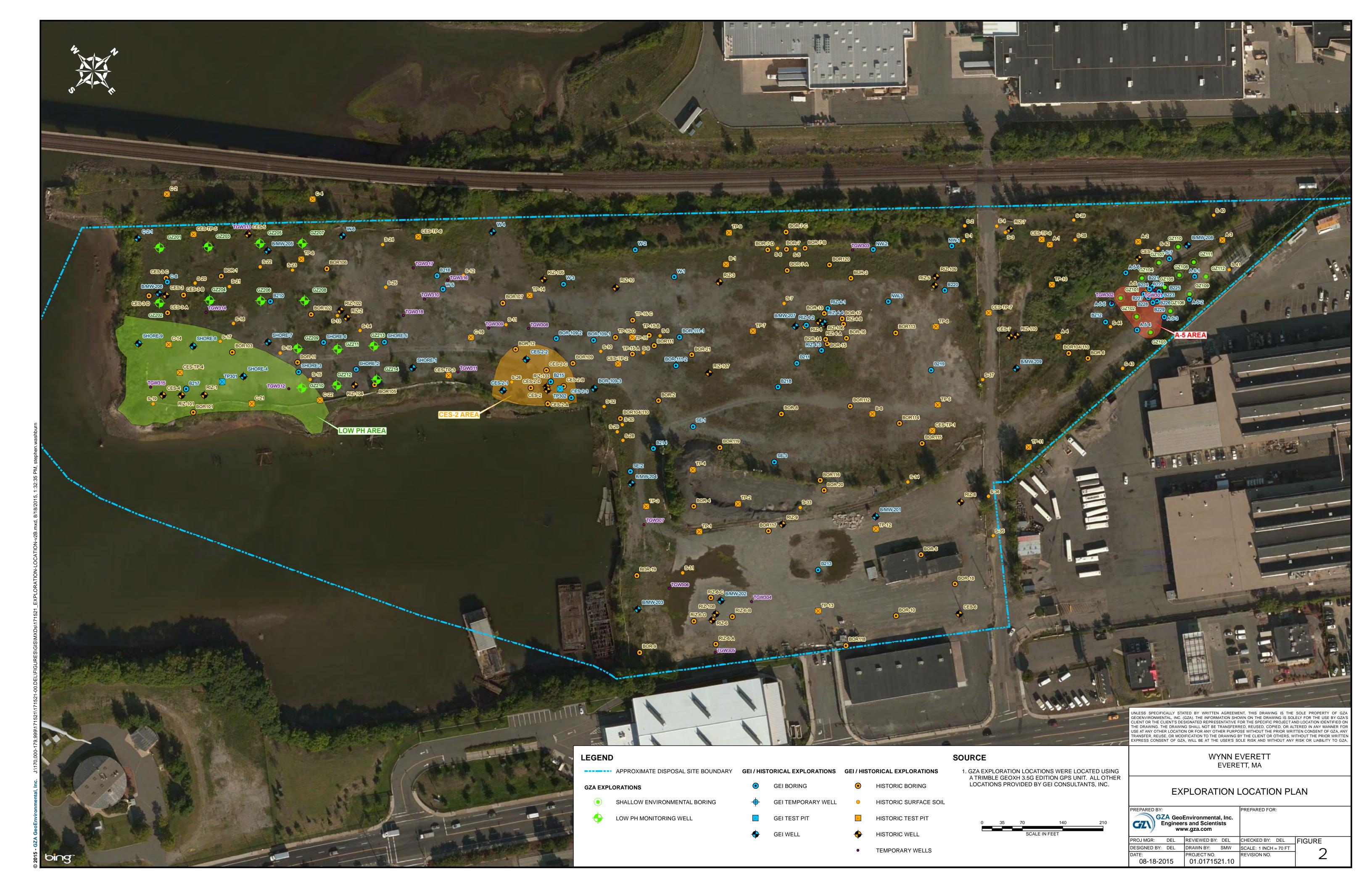
1. Samples collected in February 2015 were collected by GZA personnel and analyzed by ESS Laboratory in Cranston, Rhode Island.

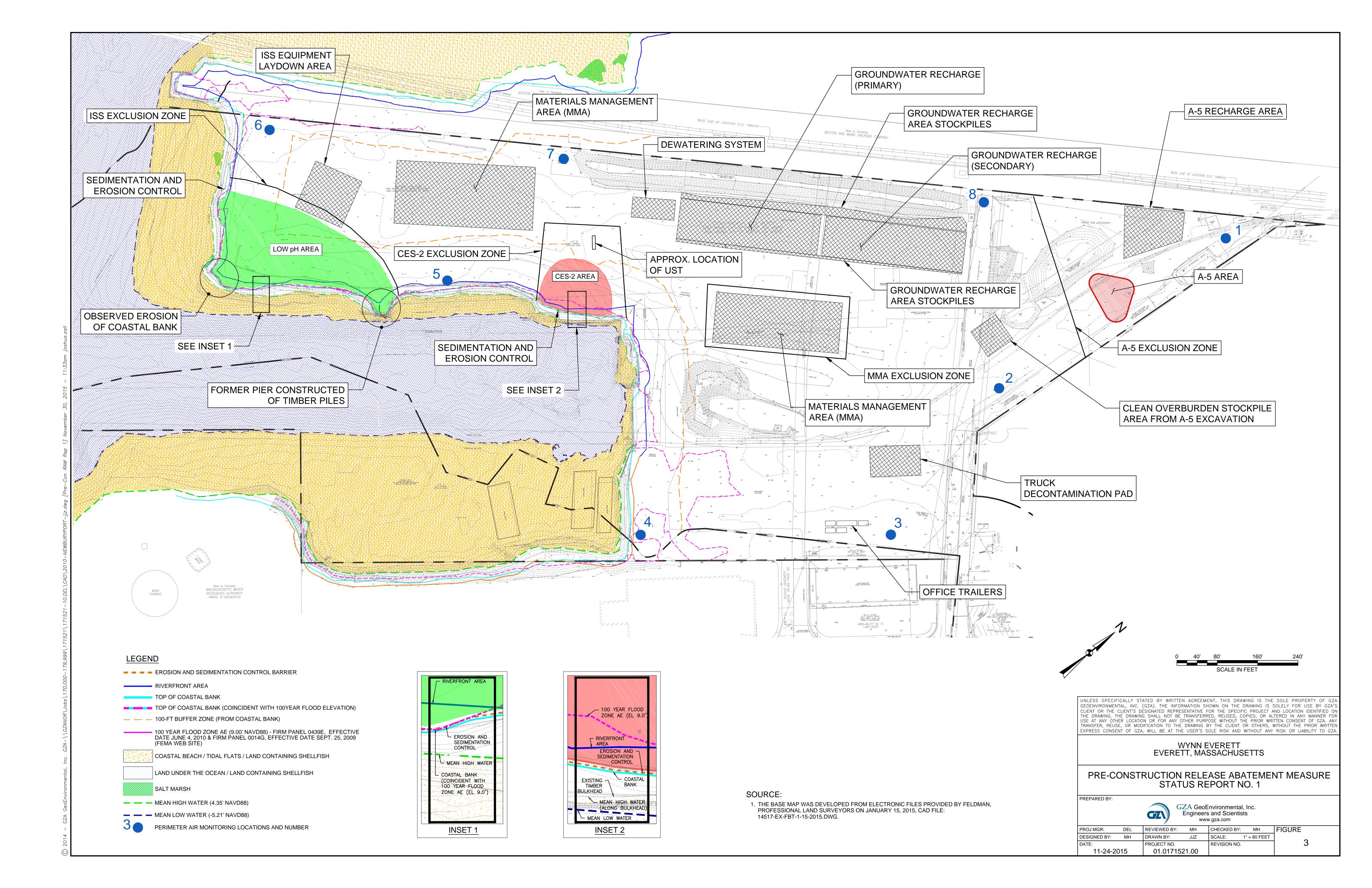
2. Results are presented in mg/kg dry weight unless otherwise noted.

3. ND = individual VOC/SVOC/PCB analytes not detected above laboratory reporting limits, refer to laboratory analytical reports; "-" means the samples was not analyzed for the particular analyte.

State														
Second S	Samula Data	02/27/2015	02/27/2015	CES-2 Area	02/27/2015	02/27/2015	2/22/2045	2/22/2045	2/22/2045			2/20/2045	2/40/2045	2/40/2045
Service (1986) (Sample ID													
Company Comp	Sample Depth	10ft - 15ft	6ft - 10ft	10ft - 15ft	6ft - 10ft	10ft - 15ft	0.0 ft -3.3ft	3.3ft - 6.6ft	6.6ft - 10.0ft	0.0ft - 3.3ft	3.3ft - 6.0ft	8.0ft - 10.0ft	0.0ft - 3.3ft	3.3ft - 6.0ft
Company Comp														
Transfer of the control of the contr	Total VOCs	0.0312	0.0261	0.1402	0.0067	0.1815	ND	ND	ND	ND	ND	ND	ND	ND
Transfer of the control of the contr	20050D Volatile Organic Commonada (mathemal)													
Martin Control Contr														
The first form form form form form form form form	Total vocs	-	-	-	-	-	-	-	-	-	-	-	-	-
The first form form form form form form form form	Method 8270 Semi-Volatile Organic Compounds (SVOCs)													
Manual Properties	Total SVOCe	82.2	489.31	13.78	2.65	3.00	ND	ND	ND	ND	ND	ND	ND	ND
The second sequence of the control o	Total SVOCS	02.2	403.31	13.70	2.03	3.03	ND	ND	ND.	ND	ND.	NB	NB	ND
The second sequence of the control o	8100M Total Petroleum Hydrocarbons													
Marie Mari		464	1410	407	94.3	164	761	210	71.4	310	885	<46.5	933	966
The Section 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1														
Part	8082A Polychlorinated Biphenyls (PCBs)													
1.00	Total PCBs	0.347	ND	ND	ND	ND	ND	59.2	1.76	0.152	1.224	ND	1.94	25.04
1.00														
1-10	8151A Herbicides (via gas chromatography)													
## Section												-		
Segret S												-		
Search												-		
Compage 46 46 46 46 46 46 46 4												-		
Common 1,00												-		
												-		
Company Comp												-		
Second Company 1												-		
## Company of the Com												-		
4.4 GOLD	Silvex (2,4,5-1P)	<0.13	<0.10	<0.16	<0.11	<0.074	<0.056	<0.056	<0.067	<0.052	<0.054	-	<0.26	<0.34
4.4 GOLD	2021B Organochlorina Postinidas (via gas abromatography)													
4.00C		<0.0027	<0.0042	<0.0033	<0.0045	<0.0031	*0.0030	*0 0030	-0.0047	*0.0003	×0.0004		-0.010	-0.0048
4.007												_		
American														
Proof 1,000 1,00												_		
Perceion -0.00027												_		
Classified professor -0.0027												_		
Sea Bir C												_		
Design Control Contr												-		
Entering -0,00027 -0,0002 -0,0003 -0,0004 -0,0003 -0			< 0.0042		< 0.0045	<0.0031						-		
Encode -0.007	Endosulfan I	<0.0027	< 0.0042	< 0.0033	< 0.0045	< 0.0031	<0.0020	<0.0020	< 0.0047	< 0.0093	< 0.0094	-	< 0.019	<0.0048
Each Control	Endosulfan II	<0.0027	< 0.0042	< 0.0033	< 0.0045	< 0.0031						-		
Statis National -0.0077 -0.0074 -0.0033 -0.0045 -0.0031 -0.0000 -0.0000 -0.0007 -0.0033 -0.0044 - -0.019 -0.0048 -0.0048 -	Endosulfan sulfate	<0.0027	< 0.0042	< 0.0033	< 0.0045	< 0.0031	<0.0020	<0.0020	< 0.0047	< 0.0093	<0.0094	-	<0.019	<0.0048
Seminar Semi	Endrin	<0.0027	< 0.0042	< 0.0033	< 0.0045	< 0.0031	<0.0020	<0.0020	< 0.0047	< 0.0093	<0.0094	-	<0.019	<0.0048
Postportobre -0.0007 -0.0042 -0.0033 -0.0045 -0.0033 -0.0045 -0.0033 -0.0020 -0.0042 -0.0043 -0.0045 -0.0033 -0.0045 -0.0033 -0.0045 -0.0033 -0.0045 -0.0033 -0.0045 -0.0033 -0.0045 -0.0033 -0.0045 -0.0033 -0.0045 -0.0033 -0.0045 -0.0033 -0.0045 -0.0033 -0.0045 -0.0033 -0.0045 -0.0033 -0.0045 -0.0033 -0.0045 -0.0047 -0.0003 -0.0044 -0.0034 -0.0046 -0.0044 -0.0046 -0.0044 -0.0046 -0.0044 -0.0046 -0.0044 -0.0046 -0.0044 -0.0046 -0.0044 -0.0046 -0.0044 -0.0046 -0.0044 -0.0046 -0.0044 -0.0046 -0.0044 -0.0046 -0.0044 -0.0046 -0.0044 -0.0046 -0.0044 -0.0046 -0.0044 -0.0046 -0.0044 -0.0046 -0.0044												-		
Physical property -0.00627 -0.0042 -0.0033 -0.0045 -0.0031 -0.0020 -0.00407 -0.00033 -0.00404 -0.0031 -0.00468 -0.0031 -0.00200 -0.00407 -0.00033 -0.0044 -0.0031 -0.00468 -0.0031 -0.00200 -0.00200 -0.0047 -0.00033 -0.0044 -0.0031 -0.00468 -0.0031 -0.00468 -0.0031 -0.00200 -0.0047 -0.00033 -0.0044 -0.0031 -0.00468 -0.0031 -0.00468 -0.0031 -0.00200 -0.0047 -0.00203 -0.0044 -0.0033 -0.0044 -0.0031 -0.00468 -0.0031 -0.00468 -0.0031 -0.00200 -0.0047 -0.00203 -0.0044 -0.0033 -0.0044 -0.0031 -0.00468 -0.0031 -0.00468 -0.0031 -0.00468 -0.0031 -0.00468 -0.0031 -0.00468 -0.0031 -0.00468 -0.0031 -0.00200 -0.0047 -0.00203 -0.0044 -0.0033 -0.0044 -0.0031 -0.00468 -0.00468 -0.0031 -0.00468 -0.0031 -0.00468												-		
Head-independence -0.0027 -0.0042 -0.0033 -0.0045 -0.0031 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.00031 -0.00084 - -0.0098 -0.0094 -0.0098 -0.0094 -0.0098 -0.0094 -0.0098 -0.0094 -0.0098 -0.0094 -0.0098 -0.0094 -0.0098 -0.0098 -0.0094 -0.0098 -0												-		
Methogyster 4,00027 4,00042 4,00033 4,00045 4,00031 4,00020 4,00047 4,00003 4,00094 .												-		
Total Metals												-		
Abareic 326 2720 4910 14800 408 4-573 95.1 29.7 15.0 32.7 12.4 32.1 67.3 8barrium 555 195 195 194 165 50.9 33.3 165 10.2 45.6 148 7.6 6 41.5 143 6.5 1	Methoxychlor	<0.0027	<0.0042	<0.0033	<0.0045	<0.0031	<0.0020	<0.0020	<0.0047	<0.0093	<0.0094	-	<0.019	<0.0048
Abareic 326 2720 4910 14800 408 4-573 95.1 29.7 15.0 32.7 12.4 32.1 67.3 8barrium 555 195 195 194 165 50.9 33.3 165 10.2 45.6 148 7.6 6 41.5 143 6.5 1	Tatal Marala													
Bartum Sept. Sep		200	2700	4040	14000	400	.570	05.4	20.7	45.0	20.7	40.4	20.4	67.0
Cadmism 9.7 45.2 47.6 4415 4415 41.5 41.5 41.5 41.5 41.8 41.2 41.2 7.66 41.5														
Chromism 12.6 10.9 35.5 13.5 37.1 17.5 78.1 7.04 40.8 25.4 46.9 19.9 21.4														
Lead 1020 2980 11200 13300 445 415 1860 84.4 170 651 41.9 341 606 84.4 170 651 41.9 341 606 84.4 170 651 41.9 341 606 84.4 170 651 41.0 24.8 4.72 8.56 11.1 166 205 8.24 0.299 30.9 0.494 11.5 4.0 4.60 4.72 4.73 4.73 4.73 4.75 4.75 4.77 4.75 4.77 4														
Mercury 1.67														
Selemin Sele														
Sher														
TCLP Metals Arsenic (mg/L)														
Arsenic (mg/L) - < <0.000 - < <0.000 - < <0.000 - < <0.000 - < <0.000 - < <0.000 - < <0.000 - < <0.000 - < <0.000 - < <0.0005 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - < <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <														
Cadmium mg/L) Lead (mg/L) Action Acti	TCLP Metals													
Lead (mg/L)		<0.500	<0.500	5.95	<0.500	12	-	-	-	-	-	-	-	-
Lead (mg/L)						-								
Mercury (mg/L)		<0.500				9.79	-	20.4	-	0.204	0.596	-	0.561	0.710
Selenium (mg/L) - - < < < < < < < <		-					-		-	-		<0.00050		
Classical Chemistry Conductivity (unthos/cm) 1470 260 1390 570 2480 193 586 899 281 1380 1430 231 503 Corrosivity (pH) 6,72 5,52 5,15 4,61 6,38 8,7 7,28 6,66 9,64 7,94 7,19 7,75 7,26 Flashpoint (*F) > 200 > 200 > 200 > 200 > 200 > 200 > 200 > 200 - 200 > 200 - 200		-	-			-								
Conductivity (umhos/cm) 1470 260 1390 570 2480 193 586 899 281 1380 1430 231 503 Corrositiv (PH) 6.72 5.52 5.15 4.61 6.38 8.87 7.28 6.66 9.64 7.94 7.19 7.75 7.26 Flashpoint ("F) >200 >200 >200 >200 >200 >200 >200 >20														
Corrosivity (pH) 6.72 5.52 5.15 4.61 6.38 8.87 7.28 6.66 9.64 7.94 7.19 7.75 7.26 Flashpoint (*F) >200 >200 >200 >200 >200 - >20	Classical Chemistry													
Flashpoint ("F) >200 >200 >200 >200 >200 >200 >200 >20	Conductivity (umhos/cm)	1470	260	1390	570	2480	193	586	899	281	1380	1430	231	503
Reactive Cyanide (mg/kg) < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 - < 2.0 < 2.0 - < 2.0							8.87	7.28	6.66	9.64	7.94	7.19	7.75	7.26
		>200		>200			>200	>200	-	>200		-	>200	
Reactive Sulfide (mg/kg) < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 - < 2.0 < 2.0 - < 2.0 < 2.0									-	<2.0	<2.0	-		<2.0
	Reactive Sulfide (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0		-	<2.0		-	<2.0	

Notes:


1. Samples collected in February 2015 were collected by GZA personnel and analyzed by ESS Laboratory in Cranston, Rhode Island.


2. Results are presented in mg/kg dry weight unless otherwise noted.

3. ND = individual VOC/SVOC/PCB analytes not detected above laboratory reporting limits, refer to laboratory analytical reports; ".." means the samples was not analyzed for the particular analyte.

FIGURES

APPENDIX A

LIMITATIONS

GZN

GEOHYDROLOGICAL LIMITATIONS

Use of Report

1. GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the agreement, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

Standard of Care

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in the Proposal for Services and/or Report and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. Conditions other than described in this report may be found at the subject location(s).
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made. Specifically, GZA does not and cannot represent that the Site contains no hazardous material, oil, or other latent condition beyond that observed by GZA during its study. Additionally, GZA makes no warranty that any response action or recommended action will achieve all of its objectives or that the findings of this study will be upheld by a local, state or federal agency.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

Subsurface Conditions

5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs. The nature and extent of variations between these explorations may not become evident until further exploration or construction. If variations or other latent conditions then become evident, it will be necessary to reevaluate the conclusions and recommendations of this report.

April 2012 PAGE 1

6. Water level readings have been made, as described in this Report, in and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The observed water table may be other than indicated in the Report.

Compliance with Codes and Regulations

7. We used reasonable care in identifying and interpreting applicable codes and regulations necessary to execute our scope of work. These codes and regulations are subject to various, and possibly contradictory, interpretations. Interpretations and compliance with codes and regulations by other parties is beyond our control.

Screening and Analytical Testing

- 8. GZA collected environmental samples at the locations identified in the Report. These samples were analyzed for the specific parameters identified in the report. Additional constituents, for which analyses were not conducted, may be present in soil, groundwater, surface water, sediment and/or air. Future Site activities and uses may result in a requirement for additional testing.
- 9. Our interpretation of field screening and laboratory data is presented in the Report. Unless otherwise noted, we relied upon the laboratory's QA/QC program to validate these data.
- 10. Variations in the types and concentrations of contaminants observed at a given location or time may occur due to release mechanisms, disposal practices, changes in flow paths, and/or the influence of various physical, chemical, biological or radiological processes. Subsequently observed concentrations may be other than indicated in the Report.

Interpretation of Data

11. Our opinions are based on available information as described in the Report, and on our professional judgment. Additional observations made over time, and/or space, may not support the opinions provided in the Report.

Additional Information

12. In the event that the Client or others authorized to use this report obtain additional information on environmental or hazardous waste issues at the Site not contained in this report, such information shall be brought to GZA's attention forthwith. GZA will evaluate such information and, on the basis of this evaluation, may modify the conclusions stated in this report.

April 2012 PAGE 2

Additional Services

13. GZA recommends that we be retained to provide services during any future investigations, design, implementation activities, construction, and/or property development/ redevelopment at the Site. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

Conceptual Site Model

14. Our opinions were developed, in part, based upon a comparison of site data to conditions anticipated within our Conceptual Site Model (CSM). The CSM is based on available information, and professional judgment. There are rarely sufficient data to develop a unique CSM. Therefore observations over time, and/or space, may vary from those depicted in the CSM provided in this report. In addition, the CSM should be evaluated and refined (as appropriate) whenever significant new information and/or data is obtained.

Risk Characterization

15. Our risk evaluation was performed in accordance with generally accepted practices of appropriate Federal and/or state regulatory agencies, and of other consultants undertaking similar studies at the same time, for similar purposes, and under similar circumstances. The findings of the risk evaluation are dependent on the numerous assumptions and uncertainties inherent in the risk characterization process. Sources of the uncertainty may include Site conditions; Site use; the nature, extent, concentration and distribution of contaminants; and the available toxicity and/or health/risk based regulatory information. Consequently, the findings of the risk characterization are not an absolute characterization of actual risks; but rather serve to highlight potential incremental risks associated with activities indicated in the Report. Actual risks may be other than indicated in the Report.

April 2012 PAGE 3

APPENDIX B

TRANSMITTAL FORM BWSC106

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC 106

Release Tracking Number

RELEASE ABATEMENT MEASURE (RAM) TRANSMITTAL FORM

3 - 13341

Pursuant to 310 CMR 40.0444 - 0446 (Subpart D)

A. SITE LOCATIO	DN:		
1. Site Name/Location A	Aid: EVERETT STAGING YARD		
2. Street Address:	1 HORIZON WAY		
3. City/Town:	EVERETT	4. Zip Code:	021490000
b 5. Check here if the Category.	disposal site that is the source of the release	e is Tier Classified. (Check the current Tier Classification
ê a. Tier I	ê b. Tier ID	b с. Т	Tier II
B. THIS FORM IS	BEING USED TO: (check all that ap	oply)	
1. List Submittal Date of	f Initial RAM Plan (if previously submitted)): 8/18/2015	
€ 2. Submit an Initial 1	Release Abatement Measure (RAM) Plan.		(mm/dd/yyyy)
	the RAM is being conducted as part of the permanent structure is to be erected in or in		
b. Specify type of per	rmanent structure: (check all that apply)	é i. School	ê ii. Residential ê iii. Commercial
e iv. Industrial	ê v. Other Specify:		
b 3. Submit a Modified	I RAM Plan of a previously submitted RAM	M Plan.	
b 4. Submit a RAM St	•		
6 5. Submit a Remedia Report.)	al Monitoring Report. (This report can only	y be submitted throug	gh eDEP, concurrent with a RAM Status
a. Type of Report: (c.b. Frequency of Subn	e i. initiai Report	ê ii. Interim Rep	ort ê iii. Final Report
• •			
	onitoring Report(s) submitted every six mo fonitoring Report(s) submitted annually, co		•
	•	neurone with a Re II.	r Status Report.
c. Number of Remed	ial Systems and/or Monitoring Programs:		
	6A, RAM Remedial Monitoring Report, murgaram addressed by this transmittal form.	ist be filled out for ea	nch Remedial System
€ 6. Submit a RAM Co	ompletion Statement.		
€ 7. Submit a Revised	RAM Completion Statement.		
8. Provide Additional R'	TNs:		
linked to a Primary T		here. This section is	rs (RTNs). RTNs that have been previously intended to allow a RAM to cover more than TN.
b. Provide the addition covered by this RAM	onal Release Tracking Number(s) 1 Submittal.]-	
€ 9. Include in the RA pursuant to 310 CMR 40	M Plan or Modified RAM Plan a Plan for t 0.0046(3).	he Application of Re	medial Additives near a sensitive receptor,
•	sections of this transmittal form m	ust he filled out u	inless otherwise noted above)

Revised: 8/5/2013 Page 1 of 6

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC 106

ê b. Basement

RELEASE ABATEMENT MEASURE (RAM)

Release Tracking Number 13341

€ c. School

Pursuant to 310 CMR 40.0444 - 0446 (Subpart D)

1. Media Impacted and Receptors Affected: (check all that apply)

		_			
$\boldsymbol{\Gamma}$	DELEVEE	Δ D	TITOTAT	OF DELEVEE	CONDITIONS THAT WARRANT RAM:
. .	RELEASE	UK	IHKEAL	UP KELEASE	ttinini ittins i hat wakkani kaw:

e d. Public Water Supply	e e. Surface Water	ê f. Zone 2	ê g. Private Well	ê h. Residence	b i. Soil
Б j. Ground Water	ê k. Sediments	ê l. Wetland	ê m. Storm Drain	ê n. Indoor Air	€ o. Air
€ p. Soil Gas	ê q. Sub-Slab Soil Gas	e r. Critical	l Exposure Pathway	€ s. NAPL	ê t. Unknown
ê u. Others Specify:					
2. Sources of the Release or TO	OR: (check all that apply)		ê a. Transformer	€ b. Fuel Tank	ê c. Pipe
ê d. OHM Delivery	ê e. AST ê i	f. Drums	ê g. Tanker Truck	ê h. Hose	ê i. Line
ê j. UST Desc	ribe:		ê l	a. Vehicle	Boat/Vessel
ê m. Unknown	b n. Other: HIST	ORIC FILL AND MA	NUFACTURING		
3. Type of Release or TOR: (ch	neck all that apply)	ê a. Dumping	ê b. Fire	c. AST Removal	ê d. Overfill
ê e. Rupture	ê f. Vehicle Accident	e g. Leak	ê h. Spill	i. Test Failure	€ j. TOR Only
€ k. UST Removal	Describe:				
ê 1. Unknown	6 m. Other: HISTO	ORIC FILL AND MAN	IUFACTURING		
Б с. Heavy Б d. О	others Specify: LOW PHIN (GROUNDWATER	₿ a. Oils	€ b. Chlorinate	ed Solvents
Metals	valets 2				
-	RESPONSE ACTION	S: (check all t		s list cumulative amour	
Metals D. DESCRIPTION OF 1	RESPONSE ACTION	S: (check all t ê 2.	hat apply, for volume	s list cumulative amour r Caps	
D. DESCRIPTION OF 1	RESPONSE ACTION nitoring Only ent or Containment Material	[S: (check all t	hat apply, for volume Temporary Covers of Temporary Water Su	s list cumulative amour r Caps	nts)
D. DESCRIPTION OF I 1. Assessment and/or Mor 3. Deployment of Absorbe	RESPONSE ACTION initoring Only ent or Containment Material m/HVAC Modification Syst	(check all t	hat apply, for volume Temporary Covers of Temporary Water Su	s list cumulative amour r Caps pplies on or Relocation of Res	nts)
Metals D. DESCRIPTION OF I 1. Assessment and/or Mor 3. Deployment of Absorbe 5. Structure Venting System	RESPONSE ACTION nitoring Only ent or Containment Material m/HVAC Modification Syst	(check all t ê 2. s ê 4. em ê 6. ê 8.	hat apply, for volume Temporary Covers o Temporary Water Su Temporary Evacuation	s list cumulative amour r Caps pplies on or Relocation of Res	nts)
Metals D. DESCRIPTION OF I 1. Assessment and/or Mor 3. Deployment of Absorbe 5. Structure Venting System 7. Product or NAPL Recovery	RESPONSE ACTION nitoring Only ent or Containment Material m/HVAC Modification Syst	(check all t ê 2. s ê 4. em ê 6. ê 8. ê 10	hat apply, for volume Temporary Covers o Temporary Water Su Temporary Evacuation Fencing and Sign Po	s list cumulative amour r Caps pplies on or Relocation of Res	nts)
Metals D. DESCRIPTION OF I 1. Assessment and/or Mor 3. Deployment of Absorbe 5. Structure Venting System 7. Product or NAPL Recov 9. Groundwater Treatment	RESPONSE ACTION nitoring Only ent or Containment Material m/HVAC Modification Syst very Systems	(check all t ê 2. s ê 4. em ê 6. ê 8. ê 10. ê 12.	hat apply, for volume Temporary Covers o Temporary Water Su Temporary Evacuatio Fencing and Sign Po D. Soil Vapor Extractio Air Sparging	s list cumulative amour r Caps pplies on or Relocation of Res	nts) sidents

ê a. Paved Surface

Revised: 8/5/2013 Page 2 of 6

€ 21. Use of Innovative Technologies:

Describe:

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC 106

RELEASE ABATEMENT MEASURE (RAM) TRANSMITTAL FORM

Release Tracking Number

| 3 | - | 13341 |

Pursuant to 310 CMR 40.0444 - 0446 (Subpart D)

D. DESCRIPTION OF RESPONSE ACTIONS (cont.): (check all that apply, for volumes list cumulative amounts) **b** 17. Excavation of Contaminated Soils Estimated volume in cubic yards 34000 **b** a. Re-use, Recycling or Treatment b i. On Site Estimated volume in cubic yards e ii. Off Site iia. Receiving Facility: Town: State: iib. Receiving Facility: Town: State: iii. Describe: APPROX. 19,000 CY SUBJECT TO IN-SITU SOLIDIFICATION/STABILIZATION OF SOILS; REMAINING 15,000 CY INCLUDES MATERIAL EXCAVATED TO REACH TARGET REMEDIATION ZONES THAT WILL BE RE-USED ON-SITE. Estimated volume in cubic yards e b. Store é i. On Site Estimated volume in cubic yards é ii. Off Site iia. Receiving Facility: Town: State: iib. Receiving Facility: Town: State: Estimated volume in cubic yards b c. Landfill i. Cover Receiving Facility: State: Town: 8800 Estimated volume in cubic yards b ii. Disposal TBD Town: TBD Receiving Facility: State: MA € 18. Removal of Drums, Tanks or Containers: a. Describe Quantity and Amount: b. Receiving Facility: Town: State: c. Receiving Facility: Town: State: € 19. Removal of Other Contaminated Media: a. Specify Type and Volume: b. Receiving Facility: Town: State: State: c. Receiving Facility: Town: € 20. Other Response Actions: Describe:

Revised: 8/5/2013 Page 3 of 6

1. LSP#:

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

Bureau of waste Site Cleanup RELEASE ABATEMENT MEASURE (RAM)

Pursuant to 310 CMR 40.0444 - 0446 (Subpart D)

TRANSMITTAL FORM

BWSC 106

ed Site Pro

Release Tracking Number

3 - 13341

E. LSP SIGNATURE AND STAMP:

8107

I attest under the pains and penalties of perjury that I have personally examined and am familiar with this transmittal form, including any and all documents accompanying this submittal. In my professional opinion and judgment based upon application of (i) the standard of care in 309 CMR 4.02(1), (ii) the applicable provisions of 309 CMR 4.02(2) and (3), and 309 CMR 4.03(2), and (iii) the provisions of 309 CMR 4.03(3), to the best of my knowledge, information and belief,

> if Section B of this form indicates that a **Release Abatement Measure Plan** is being submitted, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000 and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal;

> if Section B of this form indicates that a **Release Abatement Measure Status Report** and/or **Remedial Monitoring Report** is being submitted, the response action(s) that is (are) the subject of this submittal (i) is (are) being implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000 and (iii) comply (ies) with the identified provisions of all orders, permits, and approvals identified in this submittal;

> if Section B of this form indicates that a **Release Abatement Measure Completion Statement** is being submitted, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed and implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000 and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal:

I am aware that significant penalties may result, including, but not limited to, possible fines and imprisonment, if I submit information which I know to be false, inaccurate or materially incomplete.

2. First Name:	LAWRENCE		3. Last Name:	FELDMAN			
4. Telephone:	781-278-3700		5. Ext.:	6. Email:			
7. Signature:	Example						
8. Date:		9. LSP Stamp:		Electronic Seal			

Revised: 8/5/2013 Page 4 of 6

Massachusetts Department of Environmental Protection

Bureau of Waste Site Cleanup

RELEASE ABATEMENT MEASURE (RAM) TRANSMITTAL FORM

Pursuant to 310 CMR 40.0444 - 0446 (Subpart D)

BWSC 106

Release	Tracking	Numbe

3	_	13341

F. PERSON UNDE	RTAKING RAM:
----------------	--------------

1. Check all that apply:	€ a. change in contact n	ame b b. chan	ge of address	e c. change in tresponse actions	the person undertaking
2. Name of Organization	: WYNN MA LLC				
3. Contact First Name:	ROBERT		4. Last Name:	DESALVIO	
5. Street:	101 STATION LANDING, 2NI	D FLOOR 6. Ti	tle:	PRESIDENT	
7. City/Town:	MEDFORD	8. State:	MA	9. ZIP Code:	021550000
10. Telephone:	857-770-7801	11. Ext.:		 12. Email:	
J	IP TO RELEASE OR				to change relationship
b 1. RP or PRP	ê a. Owner	ê b. Operator	€ c. Generator		ê d. Transporter
	6 e. Other RP or PRP	Specify:	ELIGIBLE OWNER/	OPERATOR	
ê 2. Fiduciary, Secured	d Lender or Municipality wi	th Exempt Status (as	defined by M.G.L.	c. 21E, s. 2)	
ê 3. Agency or Public	Utility on a Right of Way (a	as defined by M.G.L.	c. 21E, s. 5(j))		
6 4. Any Other Person	Undertaking RAM	Specify Relation	nship:		

H. REQUIRED ATTACHMENT AND SUBMITTALS:

- € 1. Check here if any Remediation Waste, generated as a result of this RAM, will be stored, treated, managed, recycled or reused at the site following submission of the RAM Completion Statement. You must submit a Phase IV Remedy Implementation Plan along with the appropriate transmittal form (BWSC108).
- € 2. Check here if the Response Action(s) on which this opinion is based, if any, are (were) subject to any order(s), permit(s) and/or approval(s) issued by DEP or EPA. If the box is checked, you MUST attach a statement identifying the applicable provisions thereof.
- 5 3. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of the implementation of a Release Abatement Measure.
- 6 4. Check here if any non-updatable information provided on this form is incorrect, e.g. Release Address/Location Aid. Send corrections to bwsc.edep@state.ma.us.
- 6 5. If a RAM Compliance Fee is required for this RAM, check here to certify that a RAM Compliance Fee was submitted to DEP, P. O. Box 4062, Boston, MA 02211.
- **b** 6. Check here to certify that the LSP Opinion containing the material facts, data, and other information is attached.

Revised: 8/5/2013 Page 5 of 6

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC 106

RELEASE ABATEMENT MEASURE (RAM)
TRANSMITTAL FORM
Pursuant to 310 CMR 40.0444 - 0446 (Subpart D)

Release Tracking Number 13341

I. CERTIFICATION OF PERSON UNDERTAKING RAM:

inquiry of those inc the best of my kno entity legally resp	dividuals immediately responsible for obtaining and belief, true, accurate and componsible for this submittal. I/the person of	nining the inform plete, and (iii) the or entity on wh	mation, the material in nat I am fully authorize lose behalf this subn	this transmittal form, (ii) that, based on my information contained in this submittal is, to ed to make this attestation on behalf of the nittal is made am/is aware that there are submitting false, inaccurate, or incomplete
2. By:	ROBERT DESALVIO		3. Title:	PRESIDENT
	(Signature)			
4. For:	WYNN MA LLC		5. Date:	12/21/2015
	(Name of person or entity reco	orded in Section F)		(mm/dd/yyyy)
6. Check here in7. Street:8. City/Town:	f the address of the person providing certif	ication is differ 9. State:		rded in Section F. P Code:
•	12.5.4			
11. Telephone:	12. Ext.:		13. Email:	
	YOU ARE SUBJECT TO AN ANNUAL	COMPLIANC	E ASSURANCE FEE	OF UP TO \$10,000 PER
SECTIONS OF T	BILLABLE YEAR FOR THIS DISPOSAI HIS FORM OR DEP MAY RETURN THE YOU MAY BE PENALIZI	L SITE. YOU M DOCUMENT A	UST LEGIBLY COM AS INCOMPLETE. IF	PLETE ALL RELEVANT YOU SUBMIT AN INCOMPLETE FORM
	BILLABLE YEAR FOR THIS DISPOSAI HIS FORM OR DEP MAY RETURN THE YOU MAY BE PENALIZI	L SITE. YOU M DOCUMENT A	UST LEGIBLY COM AS INCOMPLETE. IF	PLETE ALL RELEVANT YOU SUBMIT AN INCOMPLETE FORM

Revised: 8/5/2013 Page 6 of 6

APPENDIX C

UST LABORATORY ANALYTICAL DATA

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Matt Smith GZA GeoEnvironmental, Inc. 249 Vanderbilt Avenue Norwood, MA 02062

RE: Wynn Everett - MCP (01.0171521.41) ESS Laboratory Work Order Number: 1511224

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

REVIEWED

By ESS Laboratory at 4:43 pm, Nov 18, 2015

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with NELAC Standards, A2LA and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1511224

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

SAMPLE RECEIPT

The following samples were received on November 10, 2015 for the analyses specified on the enclosed Chain of Custody Record.

To achieve CAM compliance for MCP data, ESS Laboratory has performed and reviewed all QA/QC Requirements and Performance Standards listed in each method. Holding times and preservation have also been reviewed. All CAM requirements have been achieved unless noted in the project narrative.

Each method has been set-up in the laboratory to reach required MCP standards. The methods for aqueous VOA and Soil Methanol VOA have known limitations for certain analytes. The regulatory standards may not be achieved due to these limitations. In addition, for all methods, matrix interferences, dilutions, and %Solids may elevate method reporting limits above regulatory standards. ESS Laboratory can provide, upon request, a Data Checker (regulatory standard comparison spreadsheet) electronic deliverable which will highlight these exceedances.

Question I: All samples for EPH were analyzed for a subset of the required MCP list per the client's request.

Revision 1 November 18, 2015: This report has been revised to include PCB results.

Lab Number Sample Name Matrix Analysis

1511224-01 UST Contents 1 Ground Water 6010C, 7010, 7470A, 8082A, 8100M, 8260B,

8270D, 9040

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1511224

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

PROJECT NARRATIVE

8082A Polychlorinated Biphenyls (PCB)

1511224-01 <u>Surrogate recovery(ies) below lower control limit (S-).</u>

Decachlorobiphenyl [2C] (15% @ 30-150%)

8100M Total Petroleum Hydrocarbons

CYK0235-CCV1 Continuing Calibration %Diff/Drift is above control limit (CD+).

Hexatriacontane (C36) (45% @ 25%)

CYK0235-CCV2 Continuing Calibration %Diff/Drift is above control limit (CD+).

Hexatriacontane (C36) (51% @ 25%)

8260B Volatile Organic Compounds

1511224-01 pH > 2 (PH+)

CYK0161-CCV1 Continuing Calibration %Diff/Drift is above control limit (CD+).

Carbon Disulfide (42% @ 20%), Methylene Chloride (28% @ 20%)

CYK0161-CCV1 Continuing Calibration %Diff/Drift is below control limit (CD-).

Bromomethane (28% @ 20%), Tetrachloroethene (22% @ 20%)

8270D Semi-Volatile Organic Compounds

CK51314-BSD1 Relative percent difference for duplicate is outside of criteria (D+).

2,4,5-Trichlorophenol (24% @ 20%), 2,4,6-Trichlorophenol (23% @ 20%), 2,4-Dichlorophenol (25% @ 20%), 2,4-Dimethylphenol (25% @ 20%), 2-Chlorophenol (29% @ 20%), 2-Methylphenol (27% @ 20%), 2-Nitrophenol (26% @ 20%), 3+4-Methylphenol (28% @ 20%), Acetophenone (21% @ 20%), Phenol

(28% @ 20%)

CYK0222-CCV1 <u>Calibration required quadratic regression (Q).</u>

2,4-Dinitrophenol (122% @ 80-120%)

CYK0222-CCV1 Continuing Calibration %Diff/Drift is above control limit (CD+).

2,4-Dinitrophenol (22% @ 20%), Di-n-octylphthalate (24% @ 20%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS Laboratory Work Order: 1511224

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015D - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1511224

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

MassDEP Analytical Protocol Certification Form

	I	MADEP RT	N: _				_					
This	s form	provides cer	rtifica	tion for the follow	ving da	nta set: 1511224-01						
Mat	rices:	(X) Ground	Wate	er/Surface Water		() Soil/Sediment	() Drinking Water	() Air	() Other:		
CA	M Pro	otocol (chec	k all	that apply below):							
	8260 CAM	VOC		7470/7471 Hg CAM III B		MassDEP VPH CAM IV A	() 8081 Pesticides CAM V B	()	7196 Hex Cr CAM VI B	() MassDEP AI CAM IX A	PH
()	8270 CAM	SVOC II B	(X)	7010 Metals CAM III C	(X)	MassDEP EPH CAM IV B	() 8151 Herbicides CAM V C	()	8330 Explosives CAM VIII A	() TO-15 VOC CAM IX B	
()	6010 CAM	Metals III A	()	6020 Metals CAM III D	(X)	8082 PCB CAM V A	() 6860 Perchlorate CAM VIII B	()	9014 Total Cyani CAM VI A	de/PAC	
				Affirmative resp	onses	to questions A throu	gh l	F are required for P r	esumptiv	ve Certainty'statu	S	
A		-	receiv	ved in a condition	consis	tent with those descri	bed	on the Chain-of-Custoo /analyzed within meth	dy, prope	erly	Yes (X) No	()
В	_	the analytica	-					ed in the selected CAN		-	Yes (X) No	()
C						cal response actions s		fied in the selected CA	M proto	col(s)	Yes (X) No	()
D	Does	the laborato	ry rep	oort comply with a	all the	reporting requirement	s spe	ecified in the CAM VI ting of Analytical Data		llity	Yes (X) No	()
Е	a. VP	H, EPH, AP	H and	d TO-15 only: Wa	s each	•	-	at significant modificat		Refer	Yes () No	()
					-	plete analyte list repo	rted	for each method?			Yes () No	()
F				_	_	Formance standard not ponses to Questions A		nformances identified a ough E)?	and evalu	ated	Yes (X) No	()
				Responses t	o Ques	stions G, H and I belo	ow a	re required for P resun	nptive Ce	ertainty'status		
G	<u>Data</u>	<u>User Note:</u> L	o Data tl	hat achieve P resun	nptive		ot ne	n the selected CAM processarily meet the data WSC-07-350.	,	·	Yes (X) No ()*	
Н	_		_			n the CAM protocol(s					Yes () No	
I		-		-	-	ist specified in the se					Yes () No	$(X)^*$
*Al	l nega	tive respons	ses m	ust be addressed	in an	attached laboratory	nar	rative.				
I, t	he un	dersigned, a	attest	under the pains	and p	enalties of perjury th	at,	based upon my perso	nal inqu	iry of those respo	onsible	

Signature: _____ Date: November 16, 2015
Printed Name: Laurel Stoddard Position: Laboratory Director

for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief,

185 Frances Avenue, Cranston, RI 02910-2211

accurate and complete.

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP Client Sample ID: UST Contents 1 Date Sampled: 11/10/15 10:30

Percent Solids: N/A

ESS Laboratory Work Order: 1511224 ESS Laboratory Sample ID: 1511224-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

Analyte Antimony	Results (MRL) 20.7 (2.5)	MDL	<u>Method</u> 7010	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 11/13/15 5:51	$\frac{\mathbf{I/V}}{50}$	$\frac{\mathbf{F/V}}{25}$	Batch CK51125
Arsenic	2540 (25.0)		6010C		1	KJK	11/11/15 20:58	50	25	CK51125
Barium	161 (25.0)		6010C		1	KJK	11/11/15 20:58	50	25	CK51125
Beryllium	ND (0.5)		6010C		1	KJK	11/11/15 20:58	50	25	CK51125
Cadmium	22.7 (2.5)		6010C		1	KJK	11/11/15 20:58	50	25	CK51125
Chromium	ND (10.0)		6010C		1	KJK	11/11/15 20:58	50	25	CK51125
Lead	322 (10.0)		6010C		1	KJK	11/11/15 20:58	50	25	CK51125
Mercury	24.5 (2.00)		7470A		10	JC	11/11/15 21:18	20	40	CK51126
Nickel	ND (25.0)		6010C		1	KJK	11/11/15 20:58	50	25	CK51125
Selenium	7.3 (5.0)		7010		1	KJK	11/13/15 1:48	50	25	CK51125
Silver	ND (5.0)		6010C		1	KJK	11/11/15 20:58	50	25	CK51125
Thallium	2.3 (1.0)		7010		1	KJK	11/13/15 19:16	50	25	CK51125
Vanadium	19.8 (10.0)		6010C		1	KJK	11/11/15 20:58	50	25	CK51125
Zinc	117 (25.0)		6010C		1	KJK	11/11/15 20:58	50	25	CK51125

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP Client Sample ID: UST Contents 1 Date Sampled: 11/10/15 10:30

Percent Solids: N/A Initial Volume: 1000 Final Volume: 1

Extraction Method: 3510C

Surrogate: Tetrachloro-m-xylene [2C]

ESS Laboratory Work Order: 1511224 ESS Laboratory Sample ID: 1511224-01

Sample Matrix: Ground Water

Units: ug/L Analyst: TJ

Prepared: 11/18/15 10:28 Cleanup Method: 3665A

8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.10)		8082A	<u></u>	1	11/18/15 14:24		CK51812
Aroclor 1221	ND (0.10)		8082A		1	11/18/15 14:24		CK51812
Aroclor 1232	ND (0.10)		8082A		1	11/18/15 14:24		CK51812
Aroclor 1242	ND (0.10)		8082A		1	11/18/15 14:24		CK51812
Aroclor 1248	ND (0.10)		8082A		1	11/18/15 14:24		CK51812
Aroclor 1254	ND (0.10)		8082A		1	11/18/15 14:24		CK51812
Aroclor 1260	ND (0.10)		8082A		1	11/18/15 14:24		CK51812
Aroclor 1262	ND (0.10)		8082A		1	11/18/15 14:24		CK51812
Aroclor 1268	ND (0.10)		8082A		1	11/18/15 14:24		CK51812
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		30 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		15 %	S-	30-150				
Surrogate: Tetrachloro-m-xylene		54 %		30-150				

31 %

30-150

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP Client Sample ID: UST Contents 1 Date Sampled: 11/10/15 10:30

Percent Solids: N/A Initial Volume: 1000 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1511224 ESS Laboratory Sample ID: 1511224-01

Sample Matrix: Ground Water

Units: ug/L Analyst: ZLC

Prepared: 11/13/15 10:40

8100M Total Petroleum Hydrocarbons

Analyte Total Petroleum Hydrocarbons	Results (MRL) 14100 (100)	<u>MDL</u>	Method 8100M	<u>Limit</u>	<u>DF</u> 1	Analyzed 11/13/15 17:11	Sequence CYK0235	Batch CK51313
	%R	ecovery	Qualifier	Limits				
Surrogate: O-Terphenyl		91 %		40-140				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP Client Sample ID: UST Contents 1 Date Sampled: 11/10/15 10:30

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1511224 ESS Laboratory Sample ID: 1511224-01

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

8260B Volatile Organic Compounds

Analyte	Results (MRL)	<u>MDL</u>	Method	<u>Limit</u>	<u>DF</u>	Analyzed	<u>Sequence</u>	Batch
1,1,1,2-Tetrachloroethane	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
1,1,1-Trichloroethane	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
1,1,2,2-Tetrachloroethane	ND (0.5)		8260B		1	11/12/15 7:07	CYK0161	CK51139
1,1,2-Trichloroethane	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
1,1-Dichloroethane	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
1,1-Dichloroethene	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
1,1-Dichloropropene	ND (2.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
1,2,3-Trichlorobenzene	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
1,2,3-Trichloropropane	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
1,2,4-Trichlorobenzene	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
1,2,4-Trimethylbenzene	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
1,2-Dibromo-3-Chloropropane	ND (5.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
1,2-Dibromoethane	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
1,2-Dichlorobenzene	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
1,2-Dichloroethane	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
1,2-Dichloropropane	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
1,3,5-Trimethylbenzene	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
1,3-Dichlorobenzene	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
1,3-Dichloropropane	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
1,4-Dichlorobenzene	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
1,4-Dioxane - Screen	ND (500)		8260B		1	11/12/15 7:07	CYK0161	CK51139
2,2-Dichloropropane	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
2-Butanone	ND (10.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
2-Chlorotoluene	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
2-Hexanone	ND (10.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
4-Chlorotoluene	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
4-Isopropyltoluene	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
4-Methyl-2-Pentanone	ND (10.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Acetone	ND (10.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Benzene	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Bromobenzene	ND (2.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Bromochloromethane	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP Client Sample ID: UST Contents 1 Date Sampled: 11/10/15 10:30

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1511224 ESS Laboratory Sample ID: 1511224-01

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

8260B Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	Limit	DF	Analyzed	Sequence	Batch
Bromodichloromethane	ND (0.6)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Bromoform	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Bromomethane	ND (2.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Carbon Disulfide	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Carbon Tetrachloride	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Chlorobenzene	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Chloroethane	ND (2.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Chloroform	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Chloromethane	ND (2.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
cis-1,2-Dichloroethene	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
cis-1,3-Dichloropropene	ND (0.4)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Dibromochloromethane	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Dibromomethane	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Dichlorodifluoromethane	ND (2.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Diethyl Ether	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Di-isopropyl ether	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Ethyl tertiary-butyl ether	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Ethylbenzene	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Hexachlorobutadiene	ND (0.6)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Hexachloroethane	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Isopropylbenzene	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Methyl tert-Butyl Ether	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Methylene Chloride	ND (2.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Naphthalene	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
n-Butylbenzene	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
n-Propylbenzene	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
sec-Butylbenzene	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Styrene	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
tert-Butylbenzene	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Tertiary-amyl methyl ether	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Tetrachloroethene	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Tetrahydrofuran	ND (5.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP Client Sample ID: UST Contents 1 Date Sampled: 11/10/15 10:30

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1511224 ESS Laboratory Sample ID: 1511224-01

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Toluene	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
trans-1,2-Dichloroethene	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
trans-1,3-Dichloropropene	ND (0.4)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Trichloroethene	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Trichlorofluoromethane	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Vinyl Chloride	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Xylene O	ND (1.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Xylene P,M	ND (2.0)		8260B		1	11/12/15 7:07	CYK0161	CK51139
Xylenes (Total)	ND (2.0)		8260B		1	11/12/15 7:07		[CALC]

Qualifier

I imits

Surrogate: 1,2-Dichloroethane-d4	99 %	70-130
Surrogate: 4-Bromofluorobenzene	94 %	70-130
Surrogate: Dibromofluoromethane	101 %	70-130
Surrogate: Toluene-d8	117 %	70-130

%Recovery

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP Client Sample ID: UST Contents 1 Date Sampled: 11/10/15 10:30

Percent Solids: N/A Initial Volume: 1000 Final Volume: 1

Extraction Method: 3520C

ESS Laboratory Work Order: 1511224 ESS Laboratory Sample ID: 1511224-01

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 11/13/15 19:10

8270D Semi-Volatile Organic Compounds

Analyte 1,2,4-Trichlorobenzene	Results (MRL) ND (10.0)	<u>MDL</u>	Method 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/16/15 12:34	Sequence CYK0222	Batch CK51314
1,2-Dichlorobenzene	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
1,3-Dichlorobenzene	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
1,4-Dichlorobenzene	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
2,4,5-Trichlorophenol	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
2,4,6-Trichlorophenol	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
2,4-Dichlorophenol	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
2,4-Dimethylphenol	ND (50.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
2,4-Dinitrophenol	ND (50.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
2,4-Dinitrotoluene	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
2,6-Dinitrotoluene	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
2-Chloronaphthalene	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
2-Chlorophenol	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
2-Methylnaphthalene	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
2-Methylphenol	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
2-Nitrophenol	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
3,3'-Dichlorobenzidine	ND (20.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
3+4-Methylphenol	ND (20.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
4-Bromophenyl-phenylether	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
4-Chloroaniline	ND (20.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
4-Nitrophenol	ND (50.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Acenaphthene	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Acenaphthylene	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Acetophenone	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Aniline	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Anthracene	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Azobenzene	ND (20.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Benzo(a)anthracene	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Benzo(a)pyrene	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Benzo(b)fluoranthene	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Benzo(g,h,i)perylene	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Benzo(k)fluoranthene	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486 Service

http://www.ESSLaboratory.com

Page 12 of 34

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP Client Sample ID: UST Contents 1 Date Sampled: 11/10/15 10:30

Percent Solids: N/A Initial Volume: 1000 Final Volume: 1

Extraction Method: 3520C

ESS Laboratory Work Order: 1511224 ESS Laboratory Sample ID: 1511224-01

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 11/13/15 19:10

8270D Semi-Volatile Organic Compounds

Analyte bis(2-Chloroethoxy)methane	Results (MRL) ND (10.0)	MDL	Method 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/16/15 12:34	Sequence CYK0222	Batch CK51314
bis(2-Chloroethyl)ether	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
bis(2-chloroisopropyl)Ether	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
bis(2-Ethylhexyl)phthalate	ND (6.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Butylbenzylphthalate	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Chrysene	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Dibenzo(a,h)Anthracene	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Dibenzofuran	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Diethylphthalate	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Dimethylphthalate	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Di-n-butylphthalate	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Di-n-octylphthalate	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Fluoranthene	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Fluorene	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Hexachlorobenzene	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Hexachlorobutadiene	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Hexachloroethane	ND (5.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Indeno(1,2,3-cd)Pyrene	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Isophorone	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Naphthalene	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Nitrobenzene	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
N-Nitrosodimethylamine	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Pentachlorophenol	ND (50.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Phenanthrene	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Phenol	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
Pyrene	ND (10.0)		8270D		1	11/16/15 12:34	CYK0222	CK51314
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		69 %		30-130				
Surrogate: 2,4,6-Tribromophenol		102 %		15-110				

Surrogate: 2-Chlorophenol-d4

Surrogate: 2-Fluorobiphenyl

73 %

77 %

15-110

30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP Client Sample ID: UST Contents 1 Date Sampled: 11/10/15 10:30

Percent Solids: N/A Initial Volume: 1000 Final Volume: 1

Extraction Method: 3520C

ESS Laboratory Work Order: 1511224 ESS Laboratory Sample ID: 1511224-01

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 11/13/15 19:10

8270D Semi-Volatile Organic Compounds

Analyte Surrogate: 2-Fluorophenol	Results (MRL)	MDL 62 %	Method	<u>Limit</u> 15-110	<u>DF</u>	<u>Analyzed</u>	Sequence	Batch
Surrogate: Nitrobenzene-d5		83 %		30-130				
Surrogate: Phenol-d6		<i>75 %</i>		15-110				
Surrogate: p-Terphenyl-d14		58 %		30-130				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP Client Sample ID: UST Contents 1 Date Sampled: 11/10/15 10:30

Percent Solids: N/A

ESS Laboratory Work Order: 1511224 ESS Laboratory Sample ID: 1511224-01

Sample Matrix: Ground Water

Classical Chemistry

Analyte Results (MRL) **MDL** Method **Limit** Analyst Analyzed <u>Units</u> **Batch** 9040 11/11/15 9:38 S.U. CK51104 7.13 (N/A)

pH Sample Temp Aqueous pH measured in water at 7.5 °C. (N/A)

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS Laboratory Work Order: 1511224

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

Total Metals

Batch CK51125 - 3005A/200.7									
Blank									
Antimony	ND	2.5	ug/L						
Arsenic	ND	25.0	ug/L						
Barium	ND	25.0	ug/L						
Beryllium	ND	0.5	ug/L						
Cadmium	ND	2.5	ug/L						
Chromium	ND	10.0	ug/L						
ead	ND	10.0	ug/L						
lickel	ND	25.0	ug/L						
elenium	ND	5.0	ug/L						
illver	ND	5.0	ug/L						
hallium	ND	1.0	ug/L						
'anadium	ND	10.0	ug/L						
linc	ND	25.0	ug/L						
cs									
Antimony	234	50.0	ug/L	250.0	93	80-120			
rsenic	254	25.0	ug/L	250.0	102	80-120			
arium	239	25.0	ug/L	250.0	96	80-120			
eryllium	24.1	0.5	ug/L	25.00	96	80-120			
admium	116	2.5	ug/L	125.0	93	80-120			
hromium	240	10.0	ug/L	250.0	96	80-120			
ead	240	10.0	ug/L	250.0	96	80-120			
ickel	249	25.0	ug/L	250.0	99	80-120			
elenium	426	100	ug/L	500.0	85	80-120			
ilver	124	5.0	ug/L	125.0	99	80-120			
hallium	292	60.0	ug/L	250.0	117	80-120			
'anadium	242	10.0	ug/L	250.0	97	80-120			
inc	240	25.0	ug/L	250.0	96	80-120			
CS Dup									
ntimony	233	50.0	ug/L	250.0	93	80-120	0.5	20	
rsenic	259	25.0	ug/L	250.0	104	80-120	2	20	
arium	241	25.0	ug/L	250.0	96	80-120	0.8	20	
eryllium	24.2	0.5	ug/L	25.00	97	80-120	0.8	20	
admium	116	2.5	ug/L	125.0	93	80-120	0.5	20	
hromium	243	10.0	ug/L	250.0	97	80-120	1	20	
ead	240	10.0	ug/L	250.0	96	80-120	0.03	20	
ickel	251	25.0	ug/L	250.0	101	80-120	1	20	
elenium	426	100	ug/L	500.0	85	80-120	0.05	20	
ilver	126	5.0	ug/L	125.0	101	80-120	1	20	
hallium	293	60.0	ug/L	250.0	117	80-120	0.3	20	
anadium	244	10.0	ug/L	250.0	98	80-120	0.8	20	
linc	242	25.0	ug/L	250.0	97	80-120	0.7	20	

Batch CK51126 - 245.1/7470A

Blank

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS Laboratory Work Order: 1511224

Quality Control Data

		Quaii	ty Cont	IOI Da	la					
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
			Total Met	als						
Batch CK51126 - 245.1/7470A										
Mercury	ND	0.20	ug/L							
LCS										
Mercury	6.65	0.20	ug/L	6.000		111	80-120			
LCS Dup										
Mercury	6.46	0.20	ug/L	6.000		108	80-120	3	20	
		8082A Poly			(PCB)					
Batch CK51812 - 3510C										
Blank										
Aroclor 1016	ND	0.05	ug/L							
Aroclor 1221	ND	0.05	ug/L							
Aroclor 1232	ND	0.05	ug/L							
Aroclor 1242	ND	0.05	ug/L							
Aroclor 1248	ND	0.05	ug/L							
Aroclor 1254	0.09	0.05	ug/L							
Aroclor 1260	ND	0.05	ug/L							
Aroclor 1262	ND	0.05	ug/L							
Aroclor 1268	ND	0.05	ug/L							
Surrogate: Decachlorobiphenyl	0.0431		ug/L	0.05000		86	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0415		ug/L	0.05000		83	30-150			
Surrogate: Tetrachloro-m-xylene	0.0266		ug/L	0.05000		53	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0295		ug/L	0.05000		59	30-150			
LCS										
Aroclor 1016	0.77	0.05	ug/L	1.000		77	40-140			
Aroclor 1260	0.88	0.05	ug/L	1.000		88	40-140			
Surrogate: Decachlorobiphenyl	0.0433		ug/L	0.05000		87	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0419		ug/L	0.05000		84	30-150			
Surrogate: Tetrachloro-m-xylene	0.0320		ug/L	0.05000		64	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0324		ug/L	0.05000		65	30-150			
LCS Dup										
Aroclor 1016	0.73	0.05	ug/L	1.000	<u> </u>	73	40-140	6	20	
Aroclor 1260	0.87	0.05	ug/L	1.000		87	40-140	0.9	20	
Surrogate: Decachlorobiphenyl	0.0419		ug/L	0.05000		84	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0408		ug/L	0.05000		82	30-150			
Surrogate: Tetrachloro-m-xylene	0.0236		ug/L	0.05000		47	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0269	8100M Tota	ug/L al Petroleun	0.05000 n Hvdroca	rbons	54	30-150			
				, σοα						
Batch CK51313 - 3510C										
Blank										
Decane (C10)	ND	5.00	ug/L							

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181
Dependability ◆ Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS Laboratory Work Order: 1511224

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		8100M Tota	al Petroleum	Hydroca	rbons					
Batch CK51313 - 3510C										
Docosane (C22)	ND	5.00	ug/L							
Dodecane (C12)	ND	5.00	ug/L							
Eicosane (C20)	ND	5.00	ug/L							
Hexacosane (C26)	ND	5.00	ug/L							
Hexadecane (C16)	ND	5.00	ug/L							
Hexatriacontane (C36)	ND	5.00	ug/L							
lonadecane (C19)	ND	5.00	ug/L							
Nonane (C9)	ND	5.00	ug/L							
Octacosane (C28)	ND	5.00	ug/L							
Octadecane (C18)	ND	5.00	ug/L							
etracosane (C24)	ND	5.00	ug/L							
etradecane (C14)	ND	5.00	ug/L							
Fotal Petroleum Hydrocarbons	ND	100	ug/L							
Friacontane (C30)	ND	5.00	ug/L							
Summarks O Tombard	77.9		ug/L	100.0		<i>78</i>	40-140			
Currogate: O-Terphenyl	77.3		ug/L	100.0		70	70-170			
ecane (C10)	35.8	5.00	ug/L	50.00		72	40-140			
Occosane (C22)	53.3	5.00	ug/L	50.00		107	40-140			
odecane (C12)	44.8	5.00	ug/L	50.00		90	40-140			
icosane (C20)	52.9	5.00		50.00		106	40-140			
lexacosane (C26)	55.0	5.00	ug/L	50.00		110	40-140			
dexadecane (C16)	50.5	5.00	ug/L	50.00		101	40-140			
			ug/L							
Hexatriacontane (C36)	68.5 54.9	5.00	ug/L	50.00		137	40-140			
Ionadecane (C19)		5.00	ug/L	50.00		110	40-140			
Vonane (C9)	30.0	5.00	ug/L	50.00		60	30-140			
Octacosane (C28)	54.4	5.00	ug/L	50.00		109	40-140			
Octadecane (C18)	52.1	5.00	ug/L	50.00		104	40-140			
etracosane (C24)	50.6	5.00	ug/L	50.00		101	40-140			
etradecane (C14)	48.5	5.00	ug/L	50.00		97	40-140			
otal Petroleum Hydrocarbons riacontane (C30)	737 55.9	100 5.00	ug/L ug/L	700.0 50.00		105 112	40-140 40-140			
	33.3	5.00	~9/ L	23.00			.0 110			
Surrogate: O-Terphenyl	92.9		ug/L	100.0		93	40-140			
.cs										
Decane (C10)	5.34	5.00	ug/L	10.00		53	40-140			
Pocosane (C22)	10.6	5.00	ug/L	10.00		106	40-140			
Podecane (C12)	6.37	5.00	ug/L	10.00		64	40-140			
iicosane (C20)	10.6	5.00	ug/L	10.00		106	40-140			
lexacosane (C26)	11.1	5.00	ug/L	10.00		111	40-140			
lexadecane (C16)	9.91	5.00	ug/L	10.00		99	40-140			
lexatriacontane (C36)	13.8	5.00	ug/L	10.00		138	40-140			
lonadecane (C19)	12.6	5.00	ug/L	10.00		126	40-140			
lonane (C9)	4.64	5.00	ug/L	10.00		46	30-140			
Octacosane (C28)	10.9	5.00	ug/L	10.00		109	40-140			

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS Laboratory Work Order: 1511224

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
, and yee	resure	8100M Tota				701120			Liiiic	Quamici
		010014 1019	ii reli oleuli	TTIYUTOCA	11 DOI 15					
Batch CK51313 - 3510C										
Octadecane (C18)	10.5	5.00	ug/L	10.00		105	40-140			
Tetracosane (C24)	10.2	5.00	ug/L	10.00		102	40-140			
Tetradecane (C14)	8.79	5.00	ug/L	10.00		88	40-140			
Total Petroleum Hydrocarbons	120	100	ug/L	140.0		86	40-140			
Triacontane (C30)	11.2	5.00	ug/L	10.00		112	40-140			
Surrogate: O-Terphenyl	80.5		ug/L	100.0		81	40-140			
LCS Dup										
Decane (C10)	31.4	5.00	ug/L	50.00		63	40-140	13	25	
Docosane (C22)	52.3	5.00	ug/L	50.00		105	40-140	2	25	
Dodecane (C12)	41.5	5.00	ug/L	50.00		83	40-140	8	25	
Eicosane (C20)	51.8	5.00	ug/L	50.00		104	40-140	2	25	
Hexacosane (C26)	54.2	5.00	ug/L	50.00		108	40-140	2	25	
Hexadecane (C16)	48.3	5.00	ug/L	50.00		97	40-140	4	25	
Hexatriacontane (C36)	65.6	5.00	ug/L	50.00		131	40-140	4	25	
Nonadecane (C19)	53.5	5.00	ug/L	50.00		107	40-140	3	25	
Nonane (C9)	24.8	5.00	ug/L	50.00		50	30-140	19	25	
Octacosane (C28)	53.3	5.00	ug/L	50.00		107	40-140	2	25	
Octadecane (C18)	50.3	5.00	ug/L	50.00		101	40-140	4	25	
Fetracosane (C24)	49.8	5.00	ug/L	50.00		100	40-140	2	25	
Tetradecane (C14)	45.7	5.00	ug/L	50.00		91	40-140	6	25	
otal Petroleum Hydrocarbons	665	100	ug/L	700.0		95	40-140	10	25	
riacontane (C30)	54.6	5.00	ug/L	50.00		109	40-140	2	25	
	87.7		ug/L	100.0		88	40-140			
Gurrogate: O-Terphenyl	0/./		ug/L	100.0		00	70-170			

8260B Volatile Organic Compounds

Batch CK51139 - 5030B			
Blank			
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloropropene	ND	2.0	ug/L
1,2,3-Trichlorobenzene	ND	1.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
1,2,4-Trichlorobenzene	ND	1.0	ug/L
1,2,4-Trimethylbenzene	ND	1.0	ug/L
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L
1,2-Dibromoethane	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
1,2-Dichloroethane	ND	1.0	ug/L
1,2-Dichloropropane	ND	1.0	ug/L

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS Laboratory Work Order: 1511224

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8260B Volatile Organic Compou	nd	S
-------------------------------	----	---

Batch CK51139 - 5030B			
1,3,5-Trimethylbenzene	ND	1.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
1,3-Dichloropropane	ND	1.0	ug/L
1,4-Dichlorobenzene	ND	1.0	ug/L
1,4-Dioxane - Screen	ND	500	ug/L
2,2-Dichloropropane	ND	1.0	ug/L
2-Butanone	ND	10.0	ug/L
2-Chlorotoluene	ND	1.0	ug/L
2-Hexanone	ND	10.0	ug/L
4-Chlorotoluene	ND	1.0	ug/L
4-Isopropyltoluene	ND	1.0	ug/L
4-Methyl-2-Pentanone	ND	10.0	ug/L
Acetone	ND	10.0	ug/L
Benzene	ND	1.0	ug/L
Bromobenzene	ND	2.0	ug/L
Bromochloromethane	ND	1.0	ug/L
Bromodichloromethane	ND	0.6	ug/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	2.0	ug/L
Carbon Disulfide	ND	1.0	ug/L
Carbon Tetrachloride	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Chloroethane	ND	2.0	ug/L
Chloroform	ND	1.0	ug/L
Chloromethane	ND	2.0	ug/L
cis-1,2-Dichloroethene	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	0.4	ug/L
Dibromochloromethane	ND	1.0	ug/L
Dibromomethane	ND	1.0	ug/L
Dichlorodifluoromethane	ND	2.0	ug/L
Diethyl Ether	ND	1.0	ug/L
Di-isopropyl ether	ND	1.0	ug/L
Ethyl tertiary-butyl ether	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Hexachlorobutadiene	ND	0.6	ug/L
Hexachloroethane	ND	1.0	ug/L
Sopropylbenzene	ND	1.0	ug/L
Methyl tert-Butyl Ether	ND	1.0	ug/L
Methylene Chloride	ND	2.0	ug/L
Naphthalene	ND	1.0	ug/L
n-Butylbenzene	ND	1.0	ug/L
n-Propylbenzene	ND	1.0	ug/L
sec-Butylbenzene	ND	1.0	ug/L
Styrene	ND	1.0	ug/L
tert-Butylbenzene	ND	1.0	ug/L

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS Laboratory Work Order: 1511224

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

		8260B Vol	atile Organ	ic Compounds			
Batch CK51139 - 5030B							
Tertiary-amyl methyl ether	ND	1.0	ug/L				
Tetrachloroethene	ND	1.0	ug/L				
Tetrahydrofuran	ND	5.0	ug/L				
Toluene	ND	1.0	ug/L				
trans-1,2-Dichloroethene	ND	1.0	ug/L				
trans-1,3-Dichloropropene	ND	0.4	ug/L				
Trichloroethene	ND	1.0	ug/L				
Trichlorofluoromethane	ND	1.0	ug/L				
Vinyl Chloride	ND	1.0	ug/L				
Xylene O	ND	1.0	ug/L				
Xylene P,M	ND	2.0	ug/L				
Xylenes (Total)	ND	2.0	ug/L				
Surrogate: 1,2-Dichloroethane-d4	25.3		ug/L	25.00	101	70-130	
Surrogate: 4-Bromofluorobenzene	22.9		ug/L	25.00	92	70-130	
Surrogate: Dibromofluoromethane	25.4		ug/L	25.00	102	70-130	
Surrogate: Toluene-d8	29.6		ug/L	25.00	118	70-130	
LCS							
1,1,1,2-Tetrachloroethane	10.0		ug/L	10.00	100	70-130	
1,1,1-Trichloroethane	9.2		ug/L	10.00	92	70-130	
1,1,2,2-Tetrachloroethane	10.3		ug/L	10.00	103	70-130	
1,1,2-Trichloroethane	9.8		ug/L	10.00	98	70-130	
1,1-Dichloroethane	9.4		ug/L	10.00	94	70-130	
1,1-Dichloroethene	10.0		ug/L	10.00	100	70-130	
1,1-Dichloropropene	9.1		ug/L	10.00	91	70-130	
1,2,3-Trichlorobenzene	10.8		ug/L	10.00	108	70-130	
1,2,3-Trichloropropane	9.8		ug/L	10.00	98	70-130	
1,2,4-Trichlorobenzene	10.5		ug/L	10.00	105	70-130	
1,2,4-Trimethylbenzene	9.6		ug/L	10.00	96	70-130	
1,2-Dibromo-3-Chloropropane	9.3		ug/L	10.00	93	70-130	
1,2-Dibromoethane	10.7		ug/L	10.00	107	70-130	
1,2-Dichlorobenzene	10.3		ug/L	10.00	103	70-130	
1,2-Dichloroethane	9.0		ug/L	10.00	90	70-130	
1,2-Dichloropropane	9.4		ug/L	10.00	94	70-130	
1,3,5-Trimethylbenzene	9.7		ug/L	10.00	97	70-130	
1,3-Dichlorobenzene	10.4		ug/L	10.00	104	70-130	
1,3-Dichloropropane	11.3		ug/L	10.00	113	70-130	
1,4-Dichlorobenzene	10.0		ug/L	10.00	100	70-130	
1,4-Dioxane - Screen	220		ug/L	200.0	110	0-332	
2,2-Dichloropropane	9.5		ug/L	10.00	95	70-130	
2-Butanone	45.5		ug/L	50.00	91	70-130	
2-Chlorotoluene	10.4		ug/L	10.00	104	70-130	
2-Hexanone	53.5		ug/L	50.00	107	70-130	
4-Chlorotoluene	9.8		ug/L	10.00	98	70-130	
4-Isopropyltoluene	9.5		ug/L	10.00	95	70-130	
4-Methyl-2-Pentanone	49.1		ug/L	50.00	98	70-130	
			-				

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181
Dependability ◆ Quality

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS Laboratory Work Order: 1511224

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8260B Volatile Organic Compounds

Batch CK51139 - 5030B					
Acetone	45.7	ug/L	50.00	91	70-130
enzene	9.7	ug/L	10.00	97	70-130
romobenzene	10.3	ug/L	10.00	103	70-130
romochloromethane	10.0	ug/L	10.00	100	70-130
omodichloromethane	9.7	ug/L	10.00	97	70-130
omoform	10.7	ug/L	10.00	107	70-130
omomethane	7.7	ug/L	10.00	77	70-130
rbon Disulfide	12.0	ug/L	10.00	120	70-130
arbon Tetrachloride	9.7	ug/L	10.00	97	70-130
llorobenzene	10.4	ug/L	10.00	104	70-130
lloroethane	8.6	ug/L	10.00	86	70-130
nloroform	9.3	ug/L	10.00	93	70-130
loromethane	7.3	ug/L	10.00	73	70-130
-1,2-Dichloroethene	10.5	ug/L	10.00	105	70-130
s-1,3-Dichloropropene	8.7	ug/L	10.00	87	70-130
ibromochloromethane	10.6	ug/L	10.00	106	70-130
ibromomethane	9.7	ug/L	10.00	97	70-130
chlorodifluoromethane	8.3	ug/L	10.00	83	70-130
ethyl Ether	9.6	ug/L	10.00	96	70-130
isopropyl ether	9.9	ug/L	10.00	99	70-130
yl tertiary-butyl ether	9.1	ug/L	10.00	91	70-130
nylbenzene	9.8	ug/L	10.00	98	70-130
kachlorobutadiene	11.5	ug/L	10.00	115	70-130
achloroethane	10.3	ug/L	10.00	103	70-130
propylbenzene	9.4	ug/L	10.00	94	70-130
hyl tert-Butyl Ether	9.3	ug/L	10.00	93	70-130
hylene Chloride	9.4	ug/L	10.00	94	70-130
ohthalene	9.9	ug/L	10.00	99	70-130
Butylbenzene	9.6	ug/L	10.00	96	70-130
Propylbenzene	9.0	ug/L	10.00	90	70-130
c-Butylbenzene	9.6	ug/L	10.00	96	70-130
yrene	9.5	ug/L	10.00	95	70-130
rt-Butylbenzene	9.5	ug/L	10.00	95	70-130
rtiary-amyl methyl ether	8.8	ug/L	10.00	88	70-130
etrachloroethene	8.4	ug/L	10.00	84	70-130
etrahydrofuran	10.8	ug/L	10.00	108	70-130
bluene	10.3	ug/L	10.00	103	70-130
ans-1,2-Dichloroethene	10.1	ug/L	10.00	101	70-130
ns-1,3-Dichloropropene	7.8	ug/L	10.00	78	70-130
ichloroethene	9.7	ug/L	10.00	97	70-130
richlorofluoromethane	8.7	ug/L	10.00	87	70-130
nyl Chloride	8.8	ug/L	10.00	88	70-130
ylene O	9.8	ug/L	10.00	98	70-130
ylene P,M	20.1	ug/L	20.00	100	70-130
(ylenes (Total)	29.8	ug/L			

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

RPD

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS Laboratory Work Order: 1511224

%REC

Quality Control Data

Spike

Source

Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		8260B Volat	ile Organi	ic Compoi	unds					
atch CK51139 - 5030B										
Surrogate: 1,2-Dichloroethane-d4	23.1		ug/L	25.00		92	70-130			
Surrogate: 4-Bromofluorobenzene	26.4		ug/L	25.00		106	70-130			
urrogate: Dibromofluoromethane	25.3		ug/L	25.00		101	70-130			
urrogate: Toluene-d8	28.8		ug/L	25.00		115	70-130			
CS Dup										
1,1,2-Tetrachloroethane	9.0		ug/L	10.00		90	70-130	11	25	
1,1-Trichloroethane	9.4		ug/L	10.00		94	70-130	2	25	
1,2,2-Tetrachloroethane	10.0		ug/L	10.00		100	70-130	3	25	
1,2-Trichloroethane	9.8		ug/L	10.00		98	70-130	0.2	25	
1-Dichloroethane	9.3		ug/L	10.00		93	70-130	1	25	
1-Dichloroethene	9.9		ug/L	10.00		99	70-130	1	25	
1-Dichloropropene	9.3		ug/L	10.00		93	70-130	2	25	
2,3-Trichlorobenzene	9.9		ug/L	10.00		99	70-130	9	25	
2,3-Trichloropropane	9.3		ug/L	10.00		93	70-130	5	25	
2,4-Trichlorobenzene	9.7		ug/L	10.00		97	70-130	8	25	
2,4-Trimethylbenzene	9.3		ug/L	10.00		93	70-130	3	25	
2-Dibromo-3-Chloropropane	9.8		ug/L	10.00		98	70-130	6	25	
2-Dibromoethane	10.0		ug/L	10.00		100	70-130	7	25	
2-Dichlorobenzene	9.7		ug/L	10.00		97	70-130	6	25	
2-Dichloroethane	8.7		ug/L	10.00		87	70-130	3	25	
2-Dichloropropane	9.3		ug/L	10.00		93	70-130	1	25	
3,5-Trimethylbenzene	9.6		ug/L	10.00		96	70-130	1	25	
3-Dichlorobenzene	10.0		ug/L	10.00		100	70-130	4	25	
3-Dichloropropane	10.2		ug/L	10.00		102	70-130	11	25	
4-Dichlorobenzene	9.5		ug/L	10.00		95	70-130	5	25	
4-Dioxane - Screen	209		ug/L	200.0		105	0-332	5	200	
2-Dichloropropane	9.0		ug/L	10.00		90	70-130	6	25	
Butanone	42.8		ug/L	50.00		86	70-130	6	25	
Chlorotoluene	10.1		ug/L	10.00		101	70-130	3	25	
Hexanone	47.5		ug/L	50.00		95	70-130	12	25	
Chlorotoluene	9.4		ug/L	10.00		94	70-130	3	25	
Isopropyltoluene	9.3		ug/L	10.00		93	70-130	3	25	
Methyl-2-Pentanone	47.2		ug/L	50.00		94	70-130	4	25	
cetone	45.7		ug/L	50.00		91	70-130	0.07	25	
enzene	9.6		ug/L	10.00		96	70-130	0.6	25	
omobenzene	10.1		ug/L	10.00		101	70-130	2	25	

185 Frances Avenue, Cranston, RI 02910-2211

9.7

9.7

9.8

7.1

12.9

9.7

9.5

8.2

Bromochloromethane

Bromodichloromethane

Bromoform

Bromomethane

Carbon Disulfide

Chlorobenzene

Chloroethane

Carbon Tetrachloride

Tel: 401-461-7181

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

10.00

10.00

10.00

10.00

10.00

10.00

10.00

10.00

Fax: 401-461-4486

97

97

98

71

129

97

95

70-130

70-130

70-130

70-130

70-130

70-130

70-130

http://www.ESSLaboratory.com

0.3

8

8

0.6

9

5

25

25

25

25

25

25

25

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS Laboratory Work Order: 1511224

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
9360P Volatila Organia Compounds										

8260B V	'olatile	Organic	Compou	nds
---------	----------	---------	--------	-----

Batch CK51139 - 5030B							
Chloroform	9.1	ug/L	10.00	91	70-130	2	25
Chloromethane	7.4	ug/L	10.00	74	70-130	1	25
is-1,2-Dichloroethene	10.2	ug/L	10.00	102	70-130	2	25
is-1,3-Dichloropropene	8.4	ug/L	10.00	84	70-130	3	25
Dibromochloromethane	9.5	ug/L	10.00	95	70-130	10	25
bibromomethane	9.6	ug/L	10.00	96	70-130	0.3	25
oichlorodifluoromethane	8.4	ug/L	10.00	84	70-130	2	25
piethyl Ether	9.2	ug/L	10.00	92	70-130	4	25
oi-isopropyl ether	9.8	ug/L	10.00	98	70-130	2	25
thyl tertiary-butyl ether	9.0	ug/L	10.00	90	70-130	1	25
thylbenzene	9.0	ug/L	10.00	90	70-130	8	25
exachlorobutadiene	10.9	ug/L	10.00	109	70-130	5	25
lexachloroethane	9.6	ug/L	10.00	96	70-130	7	25
opropylbenzene	9.2	ug/L	10.00	92	70-130	2	25
lethyl tert-Butyl Ether	9.0	ug/L	10.00	90	70-130	3	25
lethylene Chloride	11.9	ug/L	10.00	119	70-130	24	25
aphthalene	9.0	ug/L	10.00	90	70-130	10	25
-Butylbenzene	9.3	ug/L	10.00	93	70-130	3	25
-Propylbenzene	8.9	ug/L	10.00	89	70-130	1	25
ec-Butylbenzene	9.6	ug/L	10.00	96	70-130	0.1	25
tyrene	8.8	ug/L	10.00	88	70-130	7	25
rt-Butylbenzene	9.4	ug/L	10.00	94	70-130	0.8	25
ertiary-amyl methyl ether	8.9	ug/L	10.00	89	70-130	0.5	25
etrachloroethene	7.9	ug/L	10.00	79	70-130	7	25
etrahydrofuran	9.6	ug/L	10.00	96	70-130	11	25
oluene	10.2	ug/L	10.00	102	70-130	0.9	25
ans-1,2-Dichloroethene	9.9	ug/L	10.00	99	70-130	2	25
ans-1,3-Dichloropropene	7.8	ug/L	10.00	78	70-130	0.1	25
richloroethene	9.5	ug/L	10.00	95	70-130	2	25
richlorofluoromethane	8.8	ug/L	10.00	88	70-130	2	25
inyl Chloride	8.8	ug/L	10.00	88	70-130	0.6	25
ylene O	8.9	ug/L	10.00	89	70-130	9	25
rlene P,M	18.6	ug/L	20.00	93	70-130	7	25
ylenes (Total)	27.6	ug/L					
urrogate: 1,2-Dichloroethane-d4	22.6	ug/L	25.00	90	70-130		
urrogate: 4-Bromofluorobenzene	23.9	ug/L	25.00	96	70-130		
Surrogate: Dibromofluoromethane	24.9	ug/L	25.00	100	70-130		
- Surrogate: Toluene-d8	26.9	ug/L	25.00	108	70-130		

8270D Semi-Volatile Organic Compounds

Batch	CK513	14 -	352	00

Blank				
1,2,4-Trichlorobenzene	ND	10.0	ug/L	
1,2-Dichlorobenzene	ND	10.0	ug/L	
1,3-Dichlorobenzene	ND	10.0	ug/L	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS Laboratory Work Order: 1511224

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270D Semi-Volatile Organic Compounds

Batch CK51314 - 3520C			
1,4-Dichlorobenzene	ND	10.0	ug/L
2,4,5-Trichlorophenol	ND	10.0	ug/L
2,4,6-Trichlorophenol	ND	10.0	ug/L
2,4-Dichlorophenol	ND	10.0	ug/L
2,4-Dimethylphenol	ND	50.0	ug/L
2,4-Dinitrophenol	ND	50.0	ug/L
2,4-Dinitrotoluene	ND	10.0	ug/L
2,6-Dinitrotoluene	ND	10.0	ug/L
2-Chloronaphthalene	ND	10.0	ug/L
2-Chlorophenol	ND	10.0	ug/L
2-Methylnaphthalene	ND	10.0	ug/L
2-Methylphenol	ND	10.0	ug/L
2-Nitrophenol	ND	10.0	ug/L
3,3 ´-Dichlorobenzidine	ND	20.0	ug/L
3+4-Methylphenol	ND	20.0	ug/L
4-Bromophenyl-phenylether	ND	10.0	ug/L
4-Chloroaniline	ND	20.0	ug/L
4-Nitrophenol	ND	50.0	ug/L
Acenaphthene	ND	10.0	ug/L
Acenaphthylene	ND	10.0	ug/L
Acetophenone	ND	10.0	ug/L
Aniline	ND	10.0	ug/L
Anthracene	ND	10.0	ug/L
Azobenzene	ND	20.0	ug/L
Benzo(a)anthracene	ND	10.0	ug/L
Benzo(a)pyrene	ND	10.0	ug/L
Benzo(b)fluoranthene	ND	10.0	ug/L
Benzo(g,h,i)perylene	ND	10.0	ug/L
Benzo(k)fluoranthene	ND	10.0	ug/L
bis(2-Chloroethoxy)methane	ND	10.0	ug/L
bis(2-Chloroethyl)ether	ND	10.0	ug/L
bis(2-chloroisopropyl)Ether	ND	10.0	ug/L
bis(2-Ethylhexyl)phthalate	ND	6.0	ug/L
Butylbenzylphthalate	ND	10.0	ug/L
Chrysene	ND	10.0	ug/L
Dibenzo(a,h)Anthracene	ND	10.0	ug/L
Dibenzofuran	ND	10.0	ug/L
Diethylphthalate	ND	10.0	ug/L
Dimethylphthalate	ND	10.0	ug/L
Di-n-butylphthalate	ND	10.0	ug/L
Di-n-octylphthalate	ND	10.0	ug/L
Fluoranthene	ND	10.0	ug/L
Fluorene	ND	10.0	ug/L
Hexachlorobenzene	ND	10.0	ug/L
Hexachlorobutadiene	ND	10.0	ug/L

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS Laboratory Work Order: 1511224

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

82/0D Semi-Volatile	Organic	Compound	S
---------------------	---------	----------	---

Batch CK51314 - 3520C							
Hexachloroethane	ND	5.0	ug/L				
Indeno(1,2,3-cd)Pyrene	ND	10.0	ug/L				
Isophorone	ND	10.0	ug/L				
Naphthalene	ND	10.0	ug/L				
Nitrobenzene	ND	10.0	ug/L				
N-Nitrosodimethylamine	ND	10.0	ug/L				
Pentachlorophenol	ND	50.0	ug/L				
Phenanthrene	ND	10.0	ug/L				
Phenol	ND	10.0	ug/L				
Pyrene	ND	10.0	ug/L				
Surrogate: 1,2-Dichlorobenzene-d4	76.2		ug/L	100.0	76	30-130	
Surrogate: 2,4,6-Tribromophenol	141		ug/L	150.0	94	15-110	
Surrogate: 2-Chlorophenol-d4	112		ug/L	150.0	<i>75</i>	15-110	
Surrogate: 2-Fluorobiphenyl	79.2		ug/L	100.0	<i>79</i>	30-130	
Surrogate: 2-Fluorophenol	93.6		ug/L	150.0	62	15-110	
Surrogate: Nitrobenzene-d5	85.0		ug/L	100.0	85	30-130	
Surrogate: Phenol-d6	116		ug/L	150.0	<i>77</i>	15-110	
Surrogate: p-Terphenyl-d14	115		ug/L	100.0	115	30-130	
LCS							
1,2,4-Trichlorobenzene	55.9	10.0	ug/L	100.0	56	40-140	
1,2-Dichlorobenzene	53.5	10.0	ug/L	100.0	53	40-140	
1,3-Dichlorobenzene	52.8	10.0	ug/L	100.0	53	40-140	
1,4-Dichlorobenzene	53.1	10.0	ug/L	100.0	53	40-140	
2,4,5-Trichlorophenol	62.4	10.0	ug/L	100.0	62	30-130	
2,4,6-Trichlorophenol	59.9	10.0	ug/L	100.0	60	30-130	
2,4-Dichlorophenol	56.8	10.0	ug/L	100.0	57	30-130	
2,4-Dimethylphenol	47.9	50.0	ug/L	100.0	48	30-130	
2,4-Dinitrophenol	68.2	50.0	ug/L	100.0	68	30-130	
2,4-Dinitrotoluene	65.3	10.0	ug/L	100.0	65	40-140	
2,6-Dinitrotoluene	59.1	10.0	ug/L	100.0	59	40-140	
2-Chloronaphthalene	51.8	10.0	ug/L	100.0	52	40-140	
2-Chlorophenol	48.4	10.0	ug/L	100.0	48	30-130	
2-Methylnaphthalene	56.0	10.0	ug/L	100.0	56	40-140	
2-Methylphenol	52.2	10.0	ug/L	100.0	52	30-130	
2-Nitrophenol	60.5	10.0	ug/L	100.0	61	30-130	
3,3 ´-Dichlorobenzidine	60.8	20.0	ug/L	100.0	61	40-140	
3+4-Methylphenol	104	20.0	ug/L	200.0	52	30-130	
4-Bromophenyl-phenylether	63.8	10.0	ug/L	100.0	64	40-140	
4-Chloroaniline	50.7	20.0	ug/L	100.0	51	40-140	
4-Nitrophenol	60.7	50.0	ug/L	100.0	61	30-130	
Acenaphthene	59.4	10.0	ug/L	100.0	59	40-140	
Acenaphthylene	56.6	10.0	ug/L	100.0	57	40-140	
Acetophenone	57.8	10.0	ug/L	100.0	58	40-140	
Aniline	46.2	10.0	ug/L	100.0	46	40-140	
Anthracene	62.6	10.0	ug/L	100.0	63	40-140	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

Batch CK51314 - 3520C

ESS Laboratory Work Order: 1511224

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	8	270D Semi-	Volatile Org	janic Com	pounds					

Batch CK51314 - 3520C									
Azobenzene	65.7	20.0	ug/L	100.0	66	40-140			
Benzo(a)anthracene	65.5	10.0	ug/L	100.0	66	40-140			
Benzo(a)pyrene	62.4	10.0	ug/L	100.0	62	40-140			
Benzo(b)fluoranthene	67.4	10.0	ug/L	100.0	67	40-140			
Benzo(g,h,i)perylene	63.7	10.0	ug/L	100.0	64	40-140			
Benzo(k)fluoranthene	60.5	10.0	ug/L	100.0	60	40-140			
bis(2-Chloroethoxy)methane	61.5	10.0	ug/L	100.0	62	40-140			
bis(2-Chloroethyl)ether	59.3	10.0	ug/L	100.0	59	40-140			
bis(2-chloroisopropyl)Ether	55.8	10.0	ug/L	100.0	56	40-140			
bis(2-Ethylhexyl)phthalate	68.9	6.0	ug/L	100.0	69	40-140			
Butylbenzylphthalate	70.9	10.0	ug/L	100.0	71	40-140			
Chrysene	65.5	10.0	ug/L	100.0	65	40-140			
Dibenzo(a,h)Anthracene	66.4	10.0	ug/L	100.0	66	40-140			
Dibenzofuran	56.5	10.0	ug/L	100.0	56	40-140			
Diethylphthalate	61.8	10.0	ug/L	100.0	62	40-140			
Dimethylphthalate	60.6	10.0	ug/L	100.0	61	40-140			
Di-n-butylphthalate	70.4	10.0	ug/L	100.0	70	40-140			
Di-n-octylphthalate	67.7	10.0	ug/L	100.0	68	40-140			
Fluoranthene	64.1	10.0	ug/L	100.0	64	40-140			
Fluorene	60.6	10.0	ug/L	100.0	61	40-140			
Hexachlorobenzene	60.4	10.0	ug/L	100.0	60	40-140			
Hexachlorobutadiene	55.5	10.0	ug/L	100.0	56	40-140			
Hexachloroethane	51.1	5.0	ug/L	100.0	51	40-140			
Indeno(1,2,3-cd)Pyrene	64.9	10.0	ug/L	100.0	65	40-140			
Isophorone	59.9	10.0	ug/L	100.0	60	40-140			
Naphthalene	58.3	10.0	ug/L	100.0	58	40-140			
Nitrobenzene	60.0	10.0	ug/L	100.0	60	40-140			
N-Nitrosodimethylamine	63.6	10.0	ug/L	100.0	64	40-140			
Pentachlorophenol	72.4	50.0	ug/L	100.0	72	30-130			
Phenanthrene	63.2	10.0	ug/L	100.0	63	40-140			
Phenol	48.4	10.0	ug/L	100.0	48	30-130			
Pyrene	68.3	10.0	ug/L	100.0	68	40-140			
Surrogate: 1,2-Dichlorobenzene-d4	53.8		ug/L	100.0	54	30-130			
Surrogate: 2,4,6-Tribromophenol	101		ug/L	150.0	67	15-110			
Surrogate: 2-Chlorophenol-d4	72.4		ug/L	150.0	48	15-110			
Surrogate: 2-Fluorobiphenyl	57.3		ug/L	100.0	<i>57</i>	30-130			
Surrogate: 2-Fluorophenol	58.8		ug/L	150.0	39	15-110			
Surrogate: Nitrobenzene-d5	60.6		ug/L	100.0	61	30-130			
Surrogate: Phenol-d6	75.1		ug/L	150.0	50	15-110			
Surrogate: p-Terphenyl-d14	71.5		ug/L	100.0	<i>72</i>	30-130			
LCS Dup									
1,2,4-Trichlorobenzene	64.9	10.0	ug/L	100.0	65	40-140	15	20	
1,2-Dichlorobenzene	61.7	10.0	ug/L	100.0	62	40-140	14	20	
1,3-Dichlorobenzene	60.4	10.0	ug/L	100.0	60	40-140	14	20	
1,4-Dichlorobenzene	59.8	10.0	ug/L	100.0	60	40-140	12	20	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS Laboratory Work Order: 1511224

Quality Control Data

										$\overline{}$
				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

Batch CK51314 - 3520C									
2,4,5-Trichlorophenol	79.2	10.0	ug/L	100.0	79	30-130	24	20	D+
2,4,6-Trichlorophenol	75.2	10.0	ug/L	100.0	75	30-130	23	20	D+
2,4-Dichlorophenol	73.3	10.0	ug/L	100.0	73	30-130	25	20	D+
2,4-Dimethylphenol	61.6	50.0	ug/L	100.0	62	30-130	25	20	D+
2,4-Dinitrophenol	82.1	50.0	ug/L	100.0	82	30-130	18	20	
2,4-Dinitrotoluene	78.0	10.0	ug/L	100.0	78	40-140	18	20	
2,6-Dinitrotoluene	72.4	10.0	ug/L	100.0	72	40-140	20	20	
2-Chloronaphthalene	60.8	10.0	ug/L	100.0	61	40-140	16	20	
2-Chlorophenol	64.8	10.0	ug/L	100.0	65	30-130	29	20	D+
2-Methylnaphthalene	68.2	10.0	ug/L	100.0	68	40-140	20	20	
2-Methylphenol	68.8	10.0	ug/L	100.0	69	30-130	27	20	D+
2-Nitrophenol	78.4	10.0	ug/L	100.0	78	30-130	26	20	D+
3,3´-Dichlorobenzidine	67.1	20.0	ug/L	100.0	67	40-140	10	20	
3+4-Methylphenol	138	20.0	ug/L	200.0	69	30-130	28	20	D+
4-Bromophenyl-phenylether	72.7	10.0	ug/L	100.0	73	40-140	13	20	
4-Chloroaniline	60.3	20.0	ug/L	100.0	60	40-140	17	20	
4-Nitrophenol	73.4	50.0	ug/L	100.0	73	30-130	19	20	
Acenaphthene	70.8	10.0	ug/L	100.0	71	40-140	18	20	
Acenaphthylene	67.0	10.0	ug/L	100.0	67	40-140	17	20	
Acetophenone	71.4	10.0	ug/L	100.0	71	40-140	21	20	D+
Aniline	55.5	10.0	ug/L	100.0	56	40-140	18	20	
Anthracene	71.8	10.0	ug/L	100.0	72	40-140	14	20	
Azobenzene	75.5	20.0	ug/L	100.0	75	40-140	14	20	
Benzo(a)anthracene	74.1	10.0	ug/L	100.0	74	40-140	12	20	
Benzo(a)pyrene	70.8	10.0	ug/L	100.0	71	40-140	12	20	
Benzo(b)fluoranthene	75.9	10.0	ug/L	100.0	76	40-140	12	20	
Benzo(g,h,i)perylene	71.5	10.0	ug/L	100.0	72	40-140	12	20	
Benzo(k)fluoranthene	70.2	10.0	ug/L	100.0	70	40-140	15	20	
bis(2-Chloroethoxy)methane	73.4	10.0	ug/L	100.0	73	40-140	18	20	
bis(2-Chloroethyl)ether	71.3	10.0	ug/L	100.0	71	40-140	18	20	
bis(2-chloroisopropyl)Ether	67.1	10.0	ug/L	100.0	67	40-140	18	20	
bis(2-Ethylhexyl)phthalate	77.9	6.0	ug/L	100.0	78	40-140	12	20	
Butylbenzylphthalate	77.6	10.0	ug/L	100.0	78	40-140	9	20	
Chrysene	73.7	10.0	ug/L	100.0	74	40-140	12	20	
Dibenzo(a,h)Anthracene	73.8	10.0	ug/L	100.0	74	40-140	10	20	
Dibenzofuran	68.3	10.0	ug/L	100.0	68	40-140	19	20	
Diethylphthalate	73.1	10.0	ug/L	100.0	73	40-140	17	20	
Dimethylphthalate	72.1	10.0	ug/L	100.0	72	40-140	17	20	
Di-n-butylphthalate	79.2	10.0	ug/L	100.0	79	40-140	12	20	
Di-n-octylphthalate	78.2	10.0	ug/L	100.0	78	40-140	14	20	
Fluoranthene	74.9	10.0	ug/L	100.0	75	40-140	16	20	
Fluorene	73.0	10.0	ug/L	100.0	73	40-140	19	20	
Hexachlorobenzene	69.4	10.0	ug/L	100.0	69	40-140	14	20	
Hexachlorobutadiene	63.2	10.0	ug/L	100.0	63	40-140	13	20	
Hexachloroethane	57.3	5.0	ug/L	100.0	57	40-140	11	20	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

Surrogate: p-Terphenyl-d14

ESS Laboratory Work Order: 1511224

30-130

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
,		3270D Semi-	Volatile Org	anic Com						
Batch CK51314 - 3520C	72.0	10.0	/1	100.0		72	40.140		20	
Indeno(1,2,3-cd)Pyrene	72.8	10.0	ug/L	100.0		73	40-140	11	20	
Isophorone	72.6	10.0	ug/L	100.0		73	40-140	19	20	
Naphthalene	68.6	10.0	ug/L	100.0		69	40-140	16	20	
Nitrobenzene	71.3	10.0	ug/L	100.0		71	40-140	17	20	
N-Nitrosodimethylamine	72.0	10.0	ug/L	100.0		72	40-140	12	20	
Pentachlorophenol	86.1	50.0	ug/L	100.0		86	30-130	17	20	
Phenanthrene	73.0	10.0	ug/L	100.0		73	40-140	14	20	
Phenol	64.0	10.0	ug/L	100.0		64	30-130	28	20	D+
Pyrene	77.0	10.0	ug/L	100.0		77	40-140	12	20	
Surrogate: 1,2-Dichlorobenzene-d4	61.7		ug/L	100.0		62	30-130			
Surrogate: 2,4,6-Tribromophenol	118		ug/L	150.0		<i>79</i>	15-110			
Surrogate: 2-Chlorophenol-d4	95.0		ug/L	150.0		63	15-110			
Surrogate: 2-Fluorobiphenyl	64.8		ug/L	100.0		65	30-130			
Surrogate: 2-Fluorophenol	82.3		ug/L	150.0		55	15-110			
Surrogate: Nitrobenzene-d5	70.3		ug/L	100.0		70	30-130			
Surrogate: Phenol-d6	98.2		ug/L	150.0		65	15-110			

ug/L

100.0

78.2

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS Laboratory Work Order: 1511224

Notes and Definitions

	Notes and Definitions
Z16	Aqueous pH measured in water at 7.5 °C.
U	Analyte included in the analysis, but not detected
S-	Surrogate recovery(ies) below lower control limit (S-).
Q	Calibration required quadratic regression (Q).
PH+	pH > 2 (PH+)
D+	Relative percent difference for duplicate is outside of criteria (D+).
D	Diluted.
CD+	Continuing Calibration %Diff/Drift is above control limit (CD+).
CD-	Continuing Calibration %Diff/Drift is below control limit (CD-).
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume
§	Subcontracted analysis; see attached report
1	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
2	Range result excludes concentrations of target analytes eluting in that range.
3	Range result excludes the concentration of the C9-C10 aromatic range.

Results reported as a mathematical average. Avg

NR No Recovery [CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1511224

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp-services/labcert/documents/AllLabs.xls

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.depweb.state.pa.us/portal/server.pt/community/labs/13780/laboratory accreditation program/590095

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Sample and Cooler Receipt Checklist

Client: GZA GeoEnvironmental, Inc.
Client Project ID:
Shipped/Delivered Via: ESS Courier

ESS Project ID: 15110224
Date Project Due: 11/17/15
Days For Project: 5 Day

Items to be checked upon receipt:

1. Air Bill Manifest Present?	* No	10. Are the samples properly preserved?	Yes
Air No.:		11. Proper sample containers used?	Yes
2. Were Custody Seals Present?	No	12. Any air bubbles in the VOA vials?	No
3. Were Custody Seals Intact?	N/A_	13. Holding times exceeded?	No
4. Is Radiation count < 100 CPM?	Yes	14. Sufficient sample volumes?	Yes
5. Is a cooler present?	Yes	15. Any Subcontracting needed?	No
Cooler Temp: 2.0		16. Are ESS labels on correct containers?	Yes No
Iced With: Ice		17. Were samples received intact?	(Yes)No
6. Was COC included with samples?	Yes	ESS Sample IDs:	_
7. Was COC signed and dated by client?	Yes	Sub Lab:	
8. Does the COC match the sample	Yes	Analysis:	
9. Is COC complete and correct?	Yes	TAT:	
18. Was there need to call project manag	jer to discu	ss status? If yes, please explain.	
Who was called?:		By whom?	

Sampl	e Number	Properly Preserved	Container Type	# of Containers	Preservative	
	1	Yes	1 L Glass	3	NP	
	1	Yes	250 ml Plastic	1	HNO3	
	1	Yes	250 ml Plastic	1	NP	
	1	Yes	40 ml - VOA	3	HCL	
Completed By Reviewed By:	: Sul	77 D	ate/Time:_ <i>[[[10/15</i>	2042		
Reviewed By:	<u> </u>	D	ate/Time: ///////	5 2104		

ESS La	ESS Laboratory	>	. -		CHAIN OF CUSTODY	OF C	USTO	λQ	ESS	ESS Lab# 15	1 1	125 5 1		4561131	7	
Division of	Thielsch Eng	Division of Thielsch Engineering, Inc.	•	Turn Time	Standard	Other				ſ		l	GW2/GW3 (per client e-mail	3 (per cli	ent e-r	nail
185 France	s Avenue,Cr.	185 Frances Avenue, Cranston RI 02910-2211	10-2211	Regulatory 5	Regulatory State: (MA) RI CT NH NJ NY ME	NJ NY N	AE Other_			Керс	Keporting Limits -			CMT-11/12/15)	/12/15)	· ·
Tel. (401)46 www.esslab	Tel. (401)461-7181 Fav www.esslaboratory.com	Tel. (401)461-7181 Fax (401)461-4486 www.esslaboratory.com		1s this project for any of MA-MCP Navy	of the folk USAC	ng:(please circle) CT DEP Ot	irde) Other			Electoni	Electonic Deliverables		(Excel) Acc	Access (PDE)	/ii	
Co. Name	7.A	-		Project # 171521.4	・ せ Project Name		Everet	+			dr,			.5		
Contact Person	They Im. th	1h		Proj. Location Everett	H, MA	4	1 Horan Um	N Tim	sisyl		18			12/1	λγι	
Address 249 Vens	249 Venderbilt fre		City, State	State M. M.A.		2 7 020 diz	#0d	,	len A	· .	fun	0		W h	NYS	144
Tel. 781	-483-	1671	email: Math	hew.sm.	email: Matthewsin the Cotton							10	Ho	90	np	ددر
ESS Lab ID	Date	Collection Time	· Grab -G Composite-C	Matrix	Sample ID		Pres # Code Conta	# of Typ Containers Cont	Type of Vol of Container	·	28 Vld	28		701	ذدبا	J
/	Str2/01/11	0501	Ģ	PM	UST Contents 1		1,2,4	3 1/16	 	110			X	\succeq		<u> </u>
5112/11/ 12/11/	25/01/11 /10/2ms	0501	7	٧	UST Centents 2	121	8 9'	VAL		Tu can!	V	X	X	\geq	\geq	$\overline{\times}$
	-								ь							Ŧ
														-		
÷								_		<u> </u>						
							*									
											 		,	<u>.</u>		
Container Type: P-F	oly G-Glass AG-An	Container Type: P-Poly G-Glass AG-Amber Glass S-Sterile V-VOA	-voa		Matrix: S-Soil SD-Solid D-Sludge WW-Wastewater GW-Groundwater SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter	ludge WW-Wa	istewater GW-Gr	roundwater SV	V-Surface Water	. DW-Drinking	Water O-C	oir W-Wipe	s F-Fitter	,		_
Cooler Present	ent	Yes	_N	Internal Use Only		ion Code: 🕪	Preservation Code: (J-NP, Q-HCl, 3-H2SO4(J-HNO3, 5-NaOH, (B-MeOH, 7-Asorbic Acid, 8-ZnAct, 9-	12SO4(3-HN(ЭЗ, 5-NaOH, (Эмеон, 7-4	sorbic Aci	id, 8-ZnAc	4. 9.	,		<u> </u>
Seals Intact	Yes	No NA:	1	[] Pickup	Sampled by :	l I	Kip Webber	rober	1							<u> </u>
Cooler Temperature:	perature:	2.0 ice		[] Technician_	ian Comments:		TLLP b	based on	sv 2	XOZ	Me					
Relinguished by: (Signature,	grature pate & Time)	(e)	Received by: (Signature, Date & Time)	iture, Date & Time)	11/10/12	Reli	Relinquished by: (Signature, Date & Time) 1.0/15	gnature, Date &	\Jume) 1.0/		Received by: (Signature, Date & Time)	ature, Date	8 & Time)	5/1		Ť
11/11	5/00/0	1230	1	1 Bu	15:37	1	that 3	Ber	1807			Z	. /	2039		
Relinquished by: (Si	Relinquished by: (Signature, Date & Time)	(a)	Received by: (Signal	(Signature, Date & Time)		Reli	Relinquished by: (Signature, Date & Time)	gnature, Date &	. Тіте)	Receiv	Received by: (Signature, Date & Time)	ature, Date	s & Time)			
					,						•					

By circling MA-MCP, client acknowledges sampels were collected in accordance with MADEP CAM VIIA

Please fax to the laboratory all changes to Chain of Custody
Report Method Blank & Laboratory Control Sample Results

ESS Laboratory	_	•		ᅌ	CHAIN OF CUSTODY	CUST	TODY		ESS Lab#~	# 75	11325 11325		4561131	20	
ijelsch Engi.	Division of Thielsch Engineering, Inc.	•	Turn Time	Star	Standard Other					Reporting Limits -	Imits -				
: Avenue,Cra	185 Frances Avenue, Cranston RI 02910-2211	10-2211	Regulatory S	itate: MARI	Regulatory State: MARI CT NH NJ NY ME Other	ME Oth	e.								
www.esslaboratory.com	iei. (401)401-/181 Fax (401)461-4486 www.esslaboratory.com		MA-MCP N	t for any of the follow Navy USACE	ing:(please of CT DEP	rde) Other			Ē	Electonic Deliverables		Excel Ac	Access (PDE)		
7.A	·		Project # 171521.	· 4/	Project Name \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Evere	++			d V			.5		
Matthew Im, th	4		Proj. Location Everett	AW H		1.h	1 Horan Umy	Two.	sisyl	T 3			ومهيم	Ζγι	
249 Vandadailt Ave	, }	City, State	JMA		29020giz		PO#	,	snA	fum	0		W h	242	144
1-584-	119	email: Matt	email: Matthewsim, My	M Collins					-		27	Ho	90	np	00
Date	Collection Time	· Grab -G Composite-C	Matrix		Sample ID	Pres Code	# of Containers	Type of Container	Vol of Container		. 8 28		7W 2d	ذوبر	N
11/10/245	1030	G	MJ	UST Con	UST Contents 1	1,2,1	8	V, AG	40 yr Ch		X	X	$ \times $		Π
11/10/2012	1030	6	7	UST Centents	ntents 2	9'1	00	VAV	Tu can!	X	X	X	\geq	$\hat{\boxtimes}$	V
								h.							-
		·											-		
													-		
	,			·											
											<i>.</i> .				
Container Type: P-Poly G-Glass AG-Amber Glass S-Sterile V-VOA	ber Glass S-Sterile V	-VOA		Matrix: S-Soil SI	SD-Solid D-Sludge WW-Wastewater GW-Groundwater SW-Surface Water DW-Drinking Water D-Oil W-Wipes F-Filter	/-Wastewater (SW-Groundwate	er SW-Surface	Water DW-Dr	inking Water	o-Oil' W-Wip	es F-Filter		<u></u>	T
Cooler Present	Yes	oN_	Internal Use Only		Preservation Code: (Junp. & HC; 3-H2SO4(3-HNO3, 5-NaOH, @MeOH, 7-Asorbic Acid, 8-ZnAct, 9-	(J-NP, Q-HC	I, 3-H2SO4(3	HN03, 5-N	он, (Эмео	1, 7-Asorbic	Acid, 8-ZnA	6 6			Г
Seals Intact Yes	No NA:		[] Pickup	,	Sampled by:		Kip Webber	1							Т
ature:	20 ice		[] Technician	an	Comments:	2771	based	S. S.	\ \`\	ירט,	j				
Relinguished by: (Signature, Date & Time)		Received by: (Signe	Received by: (Signature, Date & Time)	1/11	10/12	Relinquished b	Relinquished by: (Signature, Date & Time) 1.0/15	rate & Time)		Received by: (Signature, Date & Time)	Signature, Da	te & Time)	112		T
5/00/01	1230	- Part of Bu	1 Bu	į	15:37	Rah	1833)		Sel	Z)	2029		
Relinquished by: (Signature, Date & Time)		Received by: (Signa	iture, Date & Time)			Relinquished b	Relinquished by: (Signature, Date & Time)		<u></u>	keceived by: (Signature, Date & Time)	Signature, Dal	te & Time)			,
			,												

By dirding MA-MCP, client acknowledges sampels were collected in accordance with MADEP CAM VIIA

Please fax to the laboratory all changes to Chain of Custody
Report Method Blank & Laboratory Control Sample Results

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Matt Smith GZA GeoEnvironmental, Inc. 249 Vanderbilt Avenue Norwood, MA 02062

RE: Wynn Everett - MCP (01.0171521.41)

ESS Laboratory Work Order Number: 1511225

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

REVIEWED

By ESS Laboratory at 2:33 pm, Nov 18, 2015

Laurel Stoddard Laboratory Director

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with NELAC Standards, A2LA and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1511225

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

SAMPLE RECEIPT

The following samples were received on November 10, 2015 for the analyses specified on the enclosed Chain of Custody Record.

To achieve CAM compliance for MCP data, ESS Laboratory has performed and reviewed all QA/QC Requirements and Performance Standards listed in each method. Holding times and preservation have also been reviewed. All CAM requirements have been achieved unless noted in the project narrative.

Each method has been set-up in the laboratory to reach required MCP standards. The methods for aqueous VOA and Soil Methanol VOA have known limitations for certain analytes. The regulatory standards may not be achieved due to these limitations. In addition, for all methods, matrix interferences, dilutions, and %Solids may elevate method reporting limits above regulatory standards. ESS Laboratory can provide, upon request, a Data Checker (regulatory standard comparison spreadsheet) electronic deliverable which will highlight these exceedances.

Low Level VOA vials were frozen by ESS Laboratory on November 10, 2015 at 21:20.

Question I: All samples for EPH were analyzed for a subset of the required MCP list per the client's request.

Revision 1 November 18, 2015: This report has been revised to include PCB results.

Lab NumberSample NameMatrixAnalysis1511225-01UST Contents 2Soil1010, 131

1010, 1311, 1311/6010C, 1311/7470A, 6010C, 7.3.3.2, 7.3.4.1, 7010, 7471B, 8082A, 8100M,

8260B Low, 8270D, 9045, 9050A

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS Laboratory Work Order: 1511225

PROJECT NARRATIVE

5035/8260B Volatile Organic Compounds / Low Level

1511225-01 <u>Internal Standard(s) outside of criteria. Sample was reanalyzed to confirm (IC).</u>

1,4-Dichlorobenzene-D4 (47% @ 50-200%)

CK51212-BS1 Blank Spike recovery is above upper control limit (B+).

Acetone (146% @ 70-130%)

CK51212-BSD1 Relative percent difference for duplicate is outside of criteria (D+).

Acetone (41% @ 25%)

8082A Polychlorinated Biphenyls (PCB)

1511225-01 Present in Method Blank (B).

Aroclor 1254

8100M Total Petroleum Hydrocarbons

CYK0166-CCV1 Continuing Calibration %Diff/Drift is above control limit (CD+).

Hexatriacontane (C36) (30% @ 25%)

CYK0166-CCV2 Continuing Calibration %Diff/Drift is above control limit (CD+).

Hexatriacontane (C36) (36% @ 25%)

8270D Semi-Volatile Organic Compounds

CYK0171-CCV1 <u>Calibration required quadratic regression (Q).</u>

2,4-Dinitrophenol (111% @ 80-120%), Pentachlorophenol (107% @ 80-120%)

Total Metals

CK51109-BSD1 Relative percent difference for duplicate is outside of criteria (D+).

Selenium (23% @ 20%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1511225

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015D - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

CURRENT SW-846 METHODOLOGY VERSIONS

3005A - Aqueous ICP Digestion

 $3020\mbox{A}$ - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1511225

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

MassDEP Analytical Protocol Certification Form

	MADEP RT	N:										
This	s form provides ce	ertifica	ation for the follow	wing d	ata set: 1511225-01							
Mat	rices: () Ground	d Wate	er/Surface Water		(X) Soil/Sediment	() Drinking Water	() Aiı	r () Other:			
CA	M Protocol (chec	ck all	that apply below):								
(X)	8260 VOC CAM II A	(X)	7470/7471 Hg CAM III B	()	MassDEP VPH CAM IV A	() 8081 Pesticides CAM V B	()) 7196 Hex Cr CAM VI B	()	SDEP API	Н
(X)	8270 SVOC CAM II B	(X)	7010 Metals CAM III C	(X)	MassDEP EPH CAM IV B	() 8151 Herbicides CAM V C	()) 8330 Explosives CAM VIII A		15 VOC IX B	
(X)	6010 Metals CAM III A	()	6020 Metals CAM III D	(X)	8082 PCB CAM V A	() 6860 Perchlorate CAM VIII B	()) 9014 Total Cyan CAM VI A	ide/PAC		
			Affirmative resp	onses	to questions A throi	ıgh .	F are required for P r	esumpti	ive Certainty'statu	ıs		
A	-						on the Chain-of-Custo d/analyzed within meth		•	Yes ((X) No ()
В		_					ied in the selected CAI		-	Yes ((X) No ()
С				-	ical response actions and ard non-conforman	-	ified in the selected CA	AM proto	ocol(s)	Yes ((X) No ()
D	Does the laborate	ory rep	port comply with	all the	reporting requiremen	ts sp	ecified in the CAM VI		ality	Yes (X) No ()
Е	a. VPH, EPH, AI	PH an	d TO-15 only: Wa	is each			ut significant modifica		(Refer	Yes (X) No ()
				-	iplete analyte list repo	orted	I for each method?			Yes () No ()
F				-	formance standard no sponses to Questions		informances identified rough E)?	and eval	luated	Yes ((X) No ()
			_				re required for P resur	_	-			
G	Data User Note:	Data t	hat achieve P resui	mptive		ot n	in the selected CAM pecessarily meet the data wsc-07-350.		` /	Yes (X)	4o ()*	
Н	-	_			n the CAM protocol(s					Yes () No (X _{)*}
I	_		_		list specified in the se					Yes () No (²	X _{)*}
*Al	l negative respon	ises m	oust be addressed	l in an	attached laboratory	na!		onal ina	uim of those veen	· ·	, (,

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.

Signature: _____ Date: November 17, 2015
Printed Name: Laurel Stoddard Position: Laboratory Director

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP Client Sample ID: UST Contents 2 Date Sampled: 11/10/15 10:30

Percent Solids: 76

ESS Laboratory Work Order: 1511225 ESS Laboratory Sample ID: 1511225-01

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst		I/V	F/V	Batch
Antimony	100 (6.15)		6010C		1	KJK	11/11/15 18:54	2.13	100	CK51109
Arsenic	1270 (3.08)		6010C		1	KJK	11/11/15 18:54	2.13	100	CK51109
Barium	113 (3.08)		6010C		1	KJK	11/11/15 18:54	2.13	100	CK51109
Beryllium	0.29 (0.14)		6010C		1	KJK	11/11/15 18:54	2.13	100	CK51109
Cadmium	11.5 (0.62)		6010C		1	KJK	11/11/15 18:54	2.13	100	CK51109
Chromium	10.6 (1.23)		6010C		1	KJK	11/11/15 18:54	2.13	100	CK51109
Lead	2710 (6.15)		6010C		1	KJK	11/11/15 18:54	2.13	100	CK51109
Mercury	38.4 (4.12)		7471B		100	JC	11/11/15 17:27	0.63	40	CK51110
Nickel	19.5 (3.08)		6010C		1	KJK	11/11/15 18:54	2.13	100	CK51109
Selenium	32.8 (15.4)		7010		25	KJK	11/13/15 4:24	2.13	100	CK51109
Silver	4.61 (0.62)		6010C		1	KJK	11/11/15 18:54	2.13	100	CK51109
Thallium	ND (1.54)		7010		5	KJK	11/12/15 23:58	2.13	100	CK51109
Vanadium	37.0 (1.23)		6010C		1	KJK	11/11/15 18:54	2.13	100	CK51109
Zinc	1050 (3.08)		6010C		1	KJK	11/11/15 18:54	2.13	100	CK51109

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP Client Sample ID: UST Contents 2

Date Sampled: 11/10/15 10:30

Percent Solids: 76

ESS Laboratory Work Order: 1511225 ESS Laboratory Sample ID: 1511225-01

Sample Matrix: Soil

Units: mg/L

Extraction Method: 3005A TCLP

TCLP Extraction Date: 11/13/15 14:19

1311 TCLP Metals

			TCLP						
Analyte	Results (MRL) MD	L Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	I/V	F/V	Batch
Arsenic	0.860 (0.050)	1311/6010C		1	KJK	11/14/15 0:06	50	50	CK51328
Lead	1.19 (0.050)	1311/6010C		1	KJK	11/14/15 0:06	50	50	CK51328
Mercury	ND (0.00050)	1311/7470A		1	PJP	11/16/15 12:54	20	40	CK51329
Selenium	ND (0.050)	1311/6010C		1	KJK	11/14/15 0:06	50	50	CK51328

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP Client Sample ID: UST Contents 2 Date Sampled: 11/10/15 10:30

Percent Solids: 76 Initial Volume: 8.7 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1511225 ESS Laboratory Sample ID: 1511225-01

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Organic Compounds / Low Level

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0038)	<u>MDL</u>	Method 8260B Low	<u>Limit</u>	<u>DF</u>	Analyzed 11/12/15 0:54	Sequence CYK0174	Batch CK51212
1,1,1-Trichloroethane	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
1,1,2,2-Tetrachloroethane	ND (0.0015)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
1,1,2-Trichloroethane	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
1,1-Dichloroethane	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
1,1-Dichloroethene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
1,1-Dichloropropene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
1,2,3-Trichlorobenzene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
1,2,3-Trichloropropane	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
1,2,4-Trichlorobenzene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
1,2,4-Trimethylbenzene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
1,2-Dibromo-3-Chloropropane	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
1,2-Dibromoethane	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
1,2-Dichlorobenzene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
1,2-Dichloroethane	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
1,2-Dichloropropane	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
1,3,5-Trimethylbenzene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
1,3-Dichlorobenzene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
1,3-Dichloropropane	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
1,4-Dichlorobenzene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
1,4-Dioxane	ND (0.0753)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
2,2-Dichloropropane	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
2-Butanone	ND (0.0075)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
2-Chlorotoluene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
2-Hexanone	ND (0.0075)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
4-Chlorotoluene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
4-Isopropyltoluene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
4-Methyl-2-Pentanone	ND (0.0075)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Acetone	0.0670 (0.0075)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Benzene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Bromobenzene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Bromochloromethane	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP Client Sample ID: UST Contents 2 Date Sampled: 11/10/15 10:30

Percent Solids: 76 Initial Volume: 8.7 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1511225 ESS Laboratory Sample ID: 1511225-01

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Organic Compounds / Low Level

Analyte Bromodichloromethane	Results (MRL) ND (0.0038)	MDL	Method 8260B Low	<u>Limit</u>	<u>DF</u>	Analyzed 11/12/15 0:54	Sequence CYK0174	Batch CK51212
Bromoform	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Bromomethane	ND (0.0075)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Carbon Disulfide	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Carbon Tetrachloride	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Chlorobenzene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Chloroethane	ND (0.0075)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Chloroform	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Chloromethane	ND (0.0075)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
cis-1,2-Dichloroethene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
cis-1,3-Dichloropropene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Dibromochloromethane	ND (0.0015)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Dibromomethane	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Dichlorodifluoromethane	ND (0.0075)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Diethyl Ether	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Di-isopropyl ether	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Ethyl tertiary-butyl ether	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Ethylbenzene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Hexachlorobutadiene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Isopropylbenzene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Methyl tert-Butyl Ether	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Methylene Chloride	ND (0.0075)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Naphthalene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
n-Butylbenzene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
n-Propylbenzene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
sec-Butylbenzene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Styrene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
tert-Butylbenzene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Tertiary-amyl methyl ether	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Tetrachloroethene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Tetrahydrofuran	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Toluene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP Client Sample ID: UST Contents 2 Date Sampled: 11/10/15 10:30

Percent Solids: 76 Initial Volume: 8.7 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1511225 ESS Laboratory Sample ID: 1511225-01

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Organic Compounds / Low Level

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
trans-1,2-Dichloroethene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
trans-1,3-Dichloropropene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Trichloroethene	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Trichlorofluoromethane	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Vinyl Chloride	ND (0.0075)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Xylene O	ND (0.0038)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Xylene P,M	ND (0.0075)		8260B Low		1	11/12/15 0:54	CYK0174	CK51212
Xylenes (Total)	ND (0.0075)		8260B Low		1	11/12/15 0:54	1	[CALC]

Ovalifian

Linnika

	%Recovery	Quaimer	LITTIES
Surrogate: 1,2-Dichloroethane-d4	109 %		70-130
Surrogate: 4-Bromofluorobenzene	84 %		70-130
Surrogate: Dibromofluoromethane	98 %		70-130
Surrogate: Toluene-d8	94 %		70-130

O/ December

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP Client Sample ID: UST Contents 2 Date Sampled: 11/10/15 10:30

Percent Solids: 76 Initial Volume: 19.3 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1511225 ESS Laboratory Sample ID: 1511225-01

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 11/17/15 18:00 Cleanup Method: 3665A

8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.0679)		8082A		1	11/18/15 12:04		CK51718
Aroclor 1221	ND (0.0679)		8082A		1	11/18/15 12:04		CK51718
Aroclor 1232	ND (0.0679)		8082A		1	11/18/15 12:04		CK51718
Aroclor 1242	ND (0.0679)		8082A		1	11/18/15 12:04		CK51718
Aroclor 1248	ND (0.0679)		8082A		1	11/18/15 12:04		CK51718
Aroclor 1254	B 0.736 (0.0679)		8082A		1	11/18/15 12:04		CK51718
Aroclor 1260	0.246 (0.0679)		8082A		1	11/18/15 12:04		CK51718
Aroclor 1262	ND (0.0679)		8082A		1	11/18/15 12:04		CK51718
Aroclor 1268	ND (0.0679)		8082A		1	11/18/15 12:04		CK51718
	%Re	ecovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		69 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		72 %		30-150				

Surrogate: Decachlorobiphenyl	69 %	30-150
Surrogate: Decachlorobiphenyl [2C]	72 %	30-150
Surrogate: Tetrachloro-m-xylene	65 %	30-150
Surrogate: Tetrachloro-m-xylene [2C]	52 %	30-150

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP Client Sample ID: UST Contents 2 Date Sampled: 11/10/15 10:30

Percent Solids: 76 Initial Volume: 10.2 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1511225 ESS Laboratory Sample ID: 1511225-01

Sample Matrix: Soil Units: mg/kg dry Analyst: DPS

Prepared: 11/11/15 15:46

8100M Total Petroleum Hydrocarbons

Analyte Total Petroleum Hydrocarbons	Results (MRL) 10600 (128)	<u>MDL</u>	Method 8100M	<u>Limit</u>	<u>DF</u> 5	<u>Analyzed</u> 11/11/15 18:09	Sequence CYK0167	Batch CK51114
	%	Recovery	Qualifier	Limits				
Surrogate: O-Terphenyl		106 %		40-140				

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability • Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP Client Sample ID: UST Contents 2 Date Sampled: 11/10/15 10:30

Percent Solids: 76 Initial Volume: 14.5 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1511225 ESS Laboratory Sample ID: 1511225-01

Sample Matrix: Soil Units: mg/kg dry Analyst: IBM

Prepared: 11/11/15 16:13

8270D Semi-Volatile Organic Compounds

Analyte 1,2,4-Trichlorobenzene	Results (MRL) ND (0.903)	<u>MDL</u>	Method 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/11/15 22:47	Sequence CYK0171	Batch CK51115
1,2-Dichlorobenzene	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
1,3-Dichlorobenzene	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
1,4-Dichlorobenzene	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
2,4,5-Trichlorophenol	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
2,4,6-Trichlorophenol	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
2,4-Dichlorophenol	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
2,4-Dimethylphenol	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
2,4-Dinitrophenol	ND (4.53)		8270D		1	11/11/15 22:47	CYK0171	CK51115
2,4-Dinitrotoluene	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
2,6-Dinitrotoluene	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
2-Chloronaphthalene	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
2-Chlorophenol	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
2-Methylnaphthalene	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
2-Methylphenol	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
2-Nitrophenol	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
3,3'-Dichlorobenzidine	ND (1.81)		8270D		1	11/11/15 22:47	CYK0171	CK51115
3+4-Methylphenol	ND (1.81)		8270D		1	11/11/15 22:47	CYK0171	CK51115
4-Bromophenyl-phenylether	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
4-Chloroaniline	ND (1.81)		8270D		1	11/11/15 22:47	CYK0171	CK51115
4-Nitrophenol	ND (4.53)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Acenaphthene	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Acenaphthylene	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Acetophenone	ND (1.81)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Aniline	ND (4.53)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Anthracene	1.15 (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Azobenzene	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Benzo(a)anthracene	3.53 (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Benzo(a)pyrene	3.47 (0.453)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Benzo(b)fluoranthene	5.02 (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Benzo(g,h,i)perylene	1.60 (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Benzo(k)fluoranthene	1.60 (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

-/181 F Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP Client Sample ID: UST Contents 2 Date Sampled: 11/10/15 10:30

Percent Solids: 76 Initial Volume: 14.5 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1511225 ESS Laboratory Sample ID: 1511225-01

Sample Matrix: Soil Units: mg/kg dry Analyst: IBM

Prepared: 11/11/15 16:13

8270D Semi-Volatile Organic Compounds

Analyte bis(2-Chloroethoxy)methane	Results (MRL) ND (0.903)	MDL	Method 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 11/11/15 22:47	Sequence CYK0171	Batch CK51115
bis(2-Chloroethyl)ether	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
bis(2-chloroisopropyl)Ether	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
bis(2-Ethylhexyl)phthalate	1.61 (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Butylbenzylphthalate	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Chrysene	4.82 (0.453)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Dibenzo(a,h)Anthracene	ND (0.453)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Dibenzofuran	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Diethylphthalate	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Dimethylphthalate	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Di-n-butylphthalate	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Di-n-octylphthalate	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Fluoranthene	8.41 (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Fluorene	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Hexachlorobenzene	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Hexachlorobutadiene	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Hexachloroethane	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Indeno(1,2,3-cd)Pyrene	1.31 (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Isophorone	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Naphthalene	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Nitrobenzene	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
N-Nitrosodimethylamine	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Pentachlorophenol	ND (4.53)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Phenanthrene	4.09 (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Phenol	ND (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
Pyrene	9.71 (0.903)		8270D		1	11/11/15 22:47	CYK0171	CK51115
		%Recovery	Qualifier	Limits				

 Surrogate: 1,2-Dichlorobenzene-d4
 54 %
 30-130

 Surrogate: 2,4,6-Tribromophenol
 87 %
 30-130

 Surrogate: 2-Chlorophenol-d4
 59 %
 30-130

 Surrogate: 2-Fluorobiphenyl
 65 %
 30-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP Client Sample ID: UST Contents 2 Date Sampled: 11/10/15 10:30

Percent Solids: 76 Initial Volume: 14.5 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1511225 ESS Laboratory Sample ID: 1511225-01

Sample Matrix: Soil Units: mg/kg dry Analyst: IBM

Prepared: 11/11/15 16:13

8270D Semi-Volatile Organic Compounds

Analyte Surrogate: 2-Fluorophenol	Results (MRL)	MDL 52 %	Method	<u>Limit</u> 30-130	<u>DF</u>	<u>Analyzed</u>	<u>Sequence</u>	Batch
Surrogate: Nitrobenzene-d5		52 %		30-130				
Surrogate: Phenol-d6		64 %		30-130				
Surrogate: p-Terphenyl-d14		92 %		30-130				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP Client Sample ID: UST Contents 2 Date Sampled: 11/10/15 10:30

Percent Solids: 76

ESS Laboratory Work Order: 1511225 ESS Laboratory Sample ID: 1511225-01

Sample Matrix: Soil

Classical Chemistry

Analyte Conductivity	Results (MRL) WL 1000 (5)	MDL Method 9050A	<u>Limit</u>	<u>DF</u>	Analyst MJV	Analyzed 11/14/15 13:01	Units umhos/cm	Batch CK51406
Corrosivity (pH)	7.41 (N/A)	9045		1	JLK	03/11/15 9:38	S.U.	CK51105
Corrosivity (pH) Sample Temp	Soil pH me							
Flashpoint	> 200 (N/A)	1010		1	JLK	11/14/15 12:44	°F	CK51404
Reactive Cyanide	ND (2.0)	7.3.3.2		1	MJV	11/14/15 9:30	mg/kg	CK51410
Reactive Sulfide	ND (2.0)	7.3.4.1		1	MJV	11/14/15 9:30	mg/kg	CK51410

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP Client Sample ID: UST Contents 2 Date Sampled: 11/10/15 10:30

Percent Solids: 76 Initial Volume: 100 Final Volume: 2000 Extraction Method: 1311 ESS Laboratory Work Order: 1511225 ESS Laboratory Sample ID: 1511225-01

Sample Matrix: Soil

Units: °C Analyst: NAR

Prepared: 11/12/15 16:21

TCLP Extraction by 1311

Analyte Temperature (Min C)	Results (MRL) 22.0 (N/A)	<u>MDL</u>	<u>Method</u> 1311	<u>Limit</u>	<u>DF</u>	Analyst NAR	Analyzed 11/13/15 10:17	Batch CK51237
Temperature (Max C)	23.0 (N/A)		1311		1	NAR	11/13/15 10:17	CK51237

Temperature (Range) Temperature is within 23 +/-2 °C. (N/A)

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

Batch CK51109 - 3050B

ESS Laboratory Work Order: 1511225

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

Total	Metals

Batch CK51109 - 3050B									
Blank									
Antimony	ND	5.00	mg/kg wet						
Arsenic	ND	2.50	mg/kg wet						
Barium	ND	2.50	mg/kg wet						
Beryllium	ND	0.11	mg/kg wet						
Cadmium	ND	0.50	mg/kg wet						
Chromium	ND	1.00	mg/kg wet						
_ead	ND	5.00	mg/kg wet						
Nickel	ND	2.50	mg/kg wet						
Selenium	ND	0.50	mg/kg wet						
Silver	ND	0.50	mg/kg wet						
Fhallium	ND	0.25	mg/kg wet						
/anadium	ND	1.00	mg/kg wet						
Zinc	ND	2.50	mg/kg wet						
LCS									
Antimony	113	16.4	mg/kg wet	106.0	106	80-120			
Arsenic	48.2	8.20	mg/kg wet	52.30	92	80-120			
Barium	141	8.20	mg/kg wet	145.0	97	80-120			
Beryllium	33.4	0.36	mg/kg wet	37.30	90	80-120			
Cadmium	56.0	1.64	mg/kg wet	71.60	78	73-127			
Chromium	77.3	3.28	mg/kg wet	88.50	87	80-120			
lickel	69.8	8.20	mg/kg wet	87.10	80	74-126			
Selenium	81.4	32.8	mg/kg wet	81.10	100	64-136			
Silver	115	1.64	mg/kg wet	114.0	101	80-120			
Thallium	62.3	16.4	mg/kg wet	65.30	95	80-120			
anadium/	84.3	3.28	mg/kg wet	82.10	103	80-120			
Zinc Zinc	106	8.20	mg/kg wet	136.0	78	70-130			
.cs									
ead	112	16.4	mg/kg wet	133.0	84	80-120			
.CS Dup									
Antimony	107	15.6	mg/kg wet	106.0	101	80-120	5	20	
Arsenic	48.3	7.81	mg/kg wet	52.30	92	80-120	0.3	20	
Barium	133	7.81	mg/kg wet	145.0	92	80-120	6	20	
Beryllium	31.7	0.34	mg/kg wet	37.30	85	80-120	5	20	
Cadmium	53.9	1.56	mg/kg wet	71.60	75	73-127	4	20	
Chromium	75.2	3.12	mg/kg wet	88.50	85	80-120	3	20	
Nickel	66.5	7.81	mg/kg wet	87.10	76	74-126	5	20	
Selenium	103	31.2	mg/kg wet	81.10	127	64-136	23	20	D+
Silver	112	1.56	mg/kg wet	114.0	98	80-120	2	20	
Fhallium	61.2	15.6	mg/kg wet	65.30	94	80-120	2	20	
/anadium	80.0	3.12	mg/kg wet	82.10	97	80-130	5	20	
Zinc	101	7.81	mg/kg wet	136.0	75	70-130	4	20	
LCS Dup	-								
Lead	116	16.1	mg/kg wet	133.0	87	80-120	4	20	
<u></u>	110	10.1	mg/kg wet	133.0	07	00 120	-7	20	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS Laboratory Work Order: 1511225

Quality Control Data

				Cnilco	Course		0/.DEC		חחח	
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
Analyce	Result	TINE			Result	701120	Limits	ПЪ	Lillie	Qualifici
			Total Meta	IIS						
Batch CK51109 - 3050B										
Reference										
Lead	3800	40.0	mg/kg wet	4490		85	83-113			
Batch CK51110 - 7471A										
Blank										
Mercury	ND	0.033	mg/kg wet							
LCS										
Mercury	9.59	1.62	mg/kg wet	9.700		99	80-120			
LCS Dup										
Mercury	10.7	1.55	mg/kg wet	9.700		110	80-120	11	20	
		1	311 TCLP M	etals						
Batch CK51328 - 3005A_TCLP										
Blank										
Arsenic	ND	0.050	mg/L							
Lead	ND	0.050	mg/L							
Selenium	ND	0.050	mg/L							
LCS										
Arsenic	0.533	0.050	mg/L	0.5000		107	80-120			
Lead	0.480	0.050	mg/L	0.5000		96	80-120			
Selenium	1.00	0.050	mg/L	1.000		100	80-120			
LCS Dup										
Arsenic	0.550	0.050	mg/L	0.5000		110	80-120	3	20	
Lead	0.495	0.050	mg/L	0.5000		99	80-120	3	20	
Selenium	1.02	0.050	mg/L	1.000		102	80-120	2	20	
Batch CK51329 - 245.1/7470A										
Blank										
Mercury	ND	0.00050	mg/L							
LCS										
Mercury	0.00582	0.00050	mg/L	0.006000		97	80-120			
LCS Dup							·			·
Mercury	0.00586	0.00050	mg/L	0.006000	·	98	80-120	0.7	20	·
	5035/8	3260B Volatil	le Organic C	ompound	s / Low L	evel				
Batch CK51212 - 5035										
Blank										
1,1,1,2-Tetrachloroethane	ND	0.0050	mg/kg wet							
1,1,1-Trichloroethane	ND	0.0050	mg/kg wet							
1,1,2,2-Tetrachloroethane	ND	0.0020	mg/kg wet							
1,1,2-Trichloroethane	ND	0.0050	mg/kg wet							
1,1-Dichloroethane	ND	0.0050	mg/kg wet							
1,1-Dichloroethene	ND	0.0050	mg/kg wet							

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

Batch CK51212 - 5035

ESS Laboratory Work Order: 1511225

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B Volatile Organic Compounds	/ Low	Level
---------------------------------------	-------	-------

Batch CR31212 - 3033			
1,1-Dichloropropene	ND	0.0050	mg/kg wet
1,2,3-Trichlorobenzene	ND	0.0050	mg/kg wet
1,2,3-Trichloropropane	ND	0.0050	mg/kg wet
1,2,4-Trichlorobenzene	ND	0.0050	mg/kg wet
1,2,4-Trimethylbenzene	ND	0.0050	mg/kg wet
,2-Dibromo-3-Chloropropane	ND	0.0050	mg/kg wet
L,2-Dibromoethane	ND	0.0050	mg/kg wet
1,2-Dichlorobenzene	ND	0.0050	mg/kg wet
1,2-Dichloroethane	ND	0.0050	mg/kg wet
1,2-Dichloropropane	ND	0.0050	mg/kg wet
1,3,5-Trimethylbenzene	ND	0.0050	mg/kg wet
1,3-Dichlorobenzene	ND	0.0050	mg/kg wet
L,3-Dichloropropane	ND	0.0050	mg/kg wet
,4-Dichlorobenzene	ND	0.0050	mg/kg wet
,4-Dioxane	ND	0.100	mg/kg wet
,, Dionane ,,2-Dichloropropane	ND	0.0050	mg/kg wet
2-Butanone	ND	0.0100	mg/kg wet
2-Chlorotoluene	ND	0.0050	mg/kg wet
!-Hexanone	ND	0.0100	mg/kg wet
-Chlorotoluene	ND	0.0050	mg/kg wet
-Isopropyltoluene	ND	0.0050	mg/kg wet
-Methyl-2-Pentanone	ND	0.0100	mg/kg wet
cetone	ND	0.0100	mg/kg wet
enzene	ND	0.0050	mg/kg wet
romobenzene	ND	0.0050	mg/kg wet
Bromochloromethane	ND	0.0050	mg/kg wet
Bromodichloromethane	ND	0.0050	mg/kg wet
romoform	ND	0.0050	mg/kg wet
Bromomethane	ND	0.0100	mg/kg wet
arbon Disulfide	ND	0.0050	mg/kg wet
arbon Tetrachloride	ND	0.0050	mg/kg wet
Chlorobenzene	ND	0.0050	mg/kg wet
thloroethane	ND	0.0100	mg/kg wet
hloroform	ND	0.0050	mg/kg wet
Chloromethane	ND	0.0100	mg/kg wet
is-1,2-Dichloroethene	ND	0.0050	mg/kg wet
is-1,3-Dichloropropene	ND	0.0050	mg/kg wet
Dibromochloromethane	ND	0.0020	mg/kg wet
Dibromomethane	ND	0.0050	mg/kg wet
pichlorodifluoromethane	ND	0.0100	mg/kg wet
piethyl Ether	ND	0.0050	mg/kg wet
)i-isopropyl ether	ND	0.0050	mg/kg wet
thyl tertiary-butyl ether	ND	0.0050	mg/kg wet
Ethylbenzene	ND	0.0050	mg/kg wet
		0.0050	mg/kg wet

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

Batch CK51212 - 5035

ESS Laboratory Work Order: 1511225

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

Datcii CK31212 - 3033							
Isopropylbenzene	ND	0.0050	mg/kg wet				
Methyl tert-Butyl Ether	ND	0.0050	mg/kg wet				
Methylene Chloride	ND	0.0100	mg/kg wet				
Naphthalene	ND	0.0050	mg/kg wet				
n-Butylbenzene	ND	0.0050	mg/kg wet				
n-Propylbenzene	ND	0.0050	mg/kg wet				
sec-Butylbenzene	ND	0.0050	mg/kg wet				
Styrene	ND	0.0050	mg/kg wet				
tert-Butylbenzene	ND	0.0050	mg/kg wet				
Tertiary-amyl methyl ether	ND	0.0050	mg/kg wet				
Tetrachloroethene	ND	0.0050	mg/kg wet				
Tetrahydrofuran	ND	0.0050	mg/kg wet				
Toluene	ND	0.0050	mg/kg wet				
trans-1,2-Dichloroethene	ND	0.0050	mg/kg wet				
trans-1,3-Dichloropropene	ND	0.0050	mg/kg wet				
Trichloroethene	ND	0.0050	mg/kg wet				
Trichlorofluoromethane	ND	0.0050	mg/kg wet				
Vinyl Chloride	ND	0.0100	mg/kg wet				
Xylene O	ND	0.0050	mg/kg wet				
Xylene P,M	ND	0.0100	mg/kg wet				
Xylenes (Total)	ND	0.0100	mg/kg wet				
Surrogate: 1,2-Dichloroethane-d4	0.0497		mg/kg wet	0.05000	99	70-130	
Surrogate: 4-Bromofluorobenzene	0.0459		mg/kg wet	0.05000	92	70-130	
Surrogate: Dibromofluoromethane	0.0464		mg/kg wet	0.05000	93	70-130	
Surrogate: Toluene-d8	0.0446		mg/kg wet	0.05000	89	70-130	
LCS							
1,1,1,2-Tetrachloroethane	0.0446	0.0050	mg/kg wet	0.05000	89	70-130	
1,1,1-Trichloroethane	0.0471	0.0050	mg/kg wet	0.05000	94	70-130	
1,1,2,2-Tetrachloroethane	0.0500	0.0020	mg/kg wet	0.05000	100	70-130	
1,1,2-Trichloroethane	0.0442	0.0050	mg/kg wet	0.05000	88	70-130	
1,1-Dichloroethane	0.0512	0.0050	mg/kg wet	0.05000	102	70-130	
1,1-Dichloroethene	0.0536	0.0050	mg/kg wet	0.05000	107	70-130	
1,1-Dichloropropene	0.0460	0.0050	mg/kg wet	0.05000	92	70-130	
1,2,3-Trichlorobenzene	0.0456	0.0050	mg/kg wet	0.05000	91	70-130	
1,2,3-Trichloropropane	0.0437	0.0050	mg/kg wet	0.05000	87	70-130	
1,2,4-Trichlorobenzene	0.0463	0.0050	mg/kg wet	0.05000	93	70-130	
1,2,4-Trimethylbenzene	0.0447	0.0050	mg/kg wet	0.05000	89	70-130	
1,2-Dibromo-3-Chloropropane	0.0511	0.0050	mg/kg wet	0.05000	102	70-130	
1,2-Dibromoethane	0.0446	0.0050	mg/kg wet	0.05000	89	70-130	
1,2-Dichlorobenzene	0.0445	0.0050	mg/kg wet	0.05000	89	70-130	
1,2-Dichloroethane	0.0497	0.0050	mg/kg wet	0.05000	99	70-130	
1,2-Dichloropropane	0.0450	0.0050	mg/kg wet	0.05000	90	70-130	
1,3,5-Trimethylbenzene	0.0460	0.0050	mg/kg wet	0.05000	92	70-130	
1,3-Dichlorobenzene	0.0507	0.0050	mg/kg wet	0.05000	101	70-130	
1,3-Dichloropropane	0.0447	0.0050	mg/kg wet	0.05000	89	70-130	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS Laboratory Work Order: 1511225

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

Batch CK51212 - 5035							
1,4-Dichlorobenzene	0.0493	0.0050	mg/kg wet	0.05000	99	70-130	
1,4-Dioxane	0.984	0.100	mg/kg wet	1.000	98	70-130	
2,2-Dichloropropane	0.0472	0.0050	mg/kg wet	0.05000	94	70-130	
2-Butanone	0.233	0.0100	mg/kg wet	0.2500	93	70-130	
2-Chlorotoluene	0.0504	0.0050	mg/kg wet	0.05000	101	70-130	
2-Hexanone	0.254	0.0100	mg/kg wet	0.2500	102	70-130	
4-Chlorotoluene	0.0506	0.0050	mg/kg wet	0.05000	101	70-130	
4-Isopropyltoluene	0.0448	0.0050	mg/kg wet	0.05000	90	70-130	
4-Methyl-2-Pentanone	0.226	0.0100	mg/kg wet	0.2500	90	70-130	
Acetone	0.365	0.0100	mg/kg wet	0.2500	146	70-130	B+
Benzene	0.0509	0.0050	mg/kg wet	0.05000	102	70-130	
Bromobenzene	0.0450	0.0050	mg/kg wet	0.05000	90	70-130	
Bromochloromethane	0.0455	0.0050	mg/kg wet	0.05000	91	70-130	
Bromodichloromethane	0.0488	0.0050	mg/kg wet	0.05000	98	70-130	
Bromoform	0.0471	0.0050	mg/kg wet	0.05000	94	70-130	
Bromomethane	0.0477	0.0100	mg/kg wet	0.05000	95	70-130	
Carbon Disulfide	0.0536	0.0050	mg/kg wet	0.05000	107	70-130	
Carbon Tetrachloride	0.0483	0.0050	mg/kg wet	0.05000	97	70-130	
Chlorobenzene	0.0438	0.0050	mg/kg wet	0.05000	88	70-130	
Chloroethane	0.0479	0.0100	mg/kg wet	0.05000	96	70-130	
Chloroform	0.0498	0.0050	mg/kg wet	0.05000	100	70-130	
Chloromethane	0.0473	0.0100	mg/kg wet	0.05000	95	70-130	
cis-1,2-Dichloroethene	0.0526	0.0050	mg/kg wet	0.05000	105	70-130	
cis-1,3-Dichloropropene	0.0456	0.0050	mg/kg wet	0.05000	91	70-130	
Dibromochloromethane	0.0499	0.0020	mg/kg wet	0.05000	100	70-130	
Dibromomethane	0.0505	0.0050	mg/kg wet	0.05000	101	70-130	
Dichlorodifluoromethane	0.0476	0.0100	mg/kg wet	0.05000	95	70-130	
Diethyl Ether	0.0504	0.0050	mg/kg wet	0.05000	101	70-130	
Di-isopropyl ether	0.0455	0.0050	mg/kg wet	0.05000	91	70-130	
Ethyl tertiary-butyl ether	0.0459	0.0050	mg/kg wet	0.05000	92	70-130	
Ethylbenzene	0.0447	0.0050	mg/kg wet	0.05000	89	70-130	
Hexachlorobutadiene	0.0466	0.0050	mg/kg wet	0.05000	93	70-130	
Isopropylbenzene	0.0505	0.0050	mg/kg wet	0.05000	101	70-130	
Methyl tert-Butyl Ether	0.0452	0.0050	mg/kg wet	0.05000	90	70-130	
Methylene Chloride	0.0542	0.0100	mg/kg wet	0.05000	108	70-130	
Naphthalene	0.0425	0.0050	mg/kg wet	0.05000	85	70-130	
n-Butylbenzene	0.0455	0.0050	mg/kg wet	0.05000	91	70-130	
n-Propylbenzene	0.0499	0.0050	mg/kg wet	0.05000	100	70-130	
sec-Butylbenzene	0.0456	0.0050	mg/kg wet	0.05000	91	70-130	
Styrene	0.0448	0.0050	mg/kg wet	0.05000	90	70-130	
tert-Butylbenzene	0.0502	0.0050	mg/kg wet	0.05000	100	70-130	
Tertiary-amyl methyl ether	0.0471	0.0050	mg/kg wet	0.05000	94	70-130	
Tetrachloroethene	0.0413	0.0050	mg/kg wet	0.05000	83	70-130	
Tetrahydrofuran	0.0462	0.0050	mg/kg wet	0.05000	92	70-130	
Toluene	0.0484	0.0050	mg/kg wet	0.05000	97	70-130	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS Laboratory Work Order: 1511225

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B Volatile Organic Compounds / Low Level									
Batch CK51212 - 5035									
rans-1,2-Dichloroethene	0.0540	0.0050	mg/kg wet	0.05000	108	70-130			
rans-1,3-Dichloropropene	0.0441	0.0050	mg/kg wet	0.05000	88	70-130			
richloroethene	0.0504	0.0050	mg/kg wet	0.05000	101	70-130			
richlorofluoromethane	0.0487	0.0050	mg/kg wet	0.05000	97	70-130			
nyl Chloride	0.0517	0.0100	mg/kg wet	0.05000	103	70-130			
vlene O	0.0429	0.0050	mg/kg wet	0.05000	86	70-130			
rlene P,M	0.0883	0.0100	mg/kg wet	0.1000	88	70-130			
rlenes (Total)	0.131	0.0100	mg/kg wet						
ırrogate: 1,2-Dichloroethane-d4	0.0477		mg/kg wet	0.05000	95	70-130			
urrogate: 4-Bromofluorobenzene	0.0446		mg/kg wet	0.05000	89	70-130			
urrogate: Dibromofluoromethane	0.0449		mg/kg wet	0.05000	90	70-130			
urrogate: Toluene-d8	0.0450		mg/kg wet	0.05000	90	70-130			
CS Dup									
1,1,2-Tetrachloroethane	0.0455	0.0050	mg/kg wet	0.05000	91	70-130	2	25	
1,1-Trichloroethane	0.0463	0.0050	mg/kg wet	0.05000	93	70-130	2	25	
1,2,2-Tetrachloroethane	0.0497	0.0020	mg/kg wet	0.05000	99	70-130	0.6	25	
1,2-Trichloroethane	0.0436	0.0050	mg/kg wet	0.05000	87	70-130	1	25	
1-Dichloroethane	0.0506	0.0050	mg/kg wet	0.05000	101	70-130	1	25	
1-Dichloroethene	0.0524	0.0050	mg/kg wet	0.05000	105	70-130	2	25	
1-Dichloropropene	0.0453	0.0050	mg/kg wet	0.05000	91	70-130	1	25	
2,3-Trichlorobenzene	0.0458	0.0050	mg/kg wet	0.05000	92	70-130	0.5	25	
2,3-Trichloropropane	0.0424	0.0050	mg/kg wet	0.05000	85	70-130	3	25	
2,4-Trichlorobenzene	0.0462	0.0050	mg/kg wet	0.05000	92	70-130	0.1	25	
2,4-Trimethylbenzene	0.0450	0.0050	mg/kg wet	0.05000	90	70-130	0.6	25	
2-Dibromo-3-Chloropropane	0.0453	0.0050	mg/kg wet	0.05000	91	70-130	12	25	
2-Dibromoethane	0.0444	0.0050	mg/kg wet	0.05000	89	70-130	0.4	25	
2-Dichlorobenzene	0.0449	0.0050	mg/kg wet	0.05000	90	70-130	1	25	
2-Dichloroethane	0.0488	0.0050	mg/kg wet	0.05000	98	70-130	2	25	
2-Dichloropropane	0.0445	0.0050	mg/kg wet	0.05000	89	70-130	1	25	
3,5-Trimethylbenzene	0.0464	0.0050	mg/kg wet	0.05000	93	70-130	1	25	
3-Dichlorobenzene	0.0507	0.0050	mg/kg wet	0.05000	101	70-130	0.08	25	
3-Dichloropropane	0.0446	0.0050	mg/kg wet	0.05000	89	70-130	0.2	25	
4-Dichlorobenzene	0.0496	0.0050	mg/kg wet	0.05000	99	70-130	0.6	25	
1-Dioxane	0.973	0.100	mg/kg wet	1.000	97	70-130	1	20	
2-Dichloropropane	0.0465	0.0050	mg/kg wet	0.05000	93	70-130	1	25	
Butanone	0.212	0.0100	mg/kg wet	0.2500	85	70-130	9	25	
Chlorotoluene	0.0498	0.0050	mg/kg wet	0.05000	100	70-130	1	25	
Hexanone	0.223	0.0100	mg/kg wet	0.2500	89	70-130	13	25	
Chlorotoluene	0.0504	0.0050	mg/kg wet	0.05000	101	70-130	0.3	25	
sopropyltoluene	0.0451	0.0050	mg/kg wet	0.05000	90	70-130	0.7	25	
Methyl-2-Pentanone	0.218	0.0100	mg/kg wet	0.2500	87	70-130	4	25	
etone	0.241	0.0100	mg/kg wet	0.2500	96	70-130	41	25	D+
nzene	0.0495	0.0050	mg/kg wet	0.05000	99	70-130	3	25	
omobenzene	0.0457	0.0050	mg/kg wet	0.05000	91	70-130	2	25	
omochloromethane	0.0446	0.0050	mg/kg wet	0.05000	89	70-130	2	25	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS Laboratory Work Order: 1511225

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B Volatile Organic Compounds / Low Level									
Batch CK51212 - 5035									
Bromodichloromethane	0.0477	0.0050	mg/kg wet	0.05000	95	70-130	2	25	
Bromoform	0.0480	0.0050	mg/kg wet	0.05000	96	70-130	2	25	
D	0.0440	0.0100		0.05000	00	70 120	0	25	

Bromoform	0.0480	0.0050	mg/kg wet	0.05000	96	/0-130	2	25
Bromomethane	0.0440	0.0100	mg/kg wet	0.05000	88	70-130	8	25
Carbon Disulfide	0.0528	0.0050	mg/kg wet	0.05000	106	70-130	1	25
Carbon Tetrachloride	0.0481	0.0050	mg/kg wet	0.05000	96	70-130	0.3	25
Chlorobenzene	0.0437	0.0050	mg/kg wet	0.05000	87	70-130	0.3	25
Chloroethane	0.0466	0.0100	mg/kg wet	0.05000	93	70-130	3	25
Chloroform	0.0497	0.0050	mg/kg wet	0.05000	99	70-130	0.2	25
Chloromethane	0.0454	0.0100	mg/kg wet	0.05000	91	70-130	4	25
cis-1,2-Dichloroethene	0.0521	0.0050	mg/kg wet	0.05000	104	70-130	1	25
cis-1,3-Dichloropropene	0.0448	0.0050	mg/kg wet	0.05000	90	70-130	2	25
Dibromochloromethane	0.0488	0.0020	mg/kg wet	0.05000	98	70-130	2	25
Dibromomethane	0.0492	0.0050	mg/kg wet	0.05000	98	70-130	3	25
Dichlorodifluoromethane	0.0466	0.0100	mg/kg wet	0.05000	93	70-130	2	25
Diethyl Ether	0.0498	0.0050	mg/kg wet	0.05000	100	70-130	1	25
Di-isopropyl ether	0.0451	0.0050	mg/kg wet	0.05000	90	70-130	1	25
Ethyl tertiary-butyl ether	0.0453	0.0050	mg/kg wet	0.05000	91	70-130	1	25
Ethylbenzene	0.0444	0.0050	mg/kg wet	0.05000	89	70-130	0.7	25
Hexachlorobutadiene	0.0474	0.0050	mg/kg wet	0.05000	95	70-130	2	25
Isopropylbenzene	0.0504	0.0050	mg/kg wet	0.05000	101	70-130	0.2	25
Methyl tert-Butyl Ether	0.0446	0.0050	mg/kg wet	0.05000	89	70-130	1	25
Methylene Chloride	0.0529	0.0100	mg/kg wet	0.05000	106	70-130	2	25
Naphthalene	0.0424	0.0050	mg/kg wet	0.05000	85	70-130	0.3	25
n-Butylbenzene	0.0455	0.0050	mg/kg wet	0.05000	91	70-130	0.2	25
n-Propylbenzene	0.0500	0.0050	mg/kg wet	0.05000	100	70-130	0.2	25
sec-Butylbenzene	0.0454	0.0050	mg/kg wet	0.05000	91	70-130	0.5	25
Styrene	0.0446	0.0050	mg/kg wet	0.05000	89	70-130	0.3	25
tert-Butylbenzene	0.0504	0.0050	mg/kg wet	0.05000	101	70-130	0.4	25
Tertiary-amyl methyl ether	0.0468	0.0050	mg/kg wet	0.05000	94	70-130	0.7	25
Tetrachloroethene	0.0413	0.0050	mg/kg wet	0.05000	83	70-130	0	25
Tetrahydrofuran	0.0427	0.0050	mg/kg wet	0.05000	85	70-130	8	25
Toluene	0.0481	0.0050	mg/kg wet	0.05000	96	70-130	0.6	25
trans-1,2-Dichloroethene	0.0534	0.0050	mg/kg wet	0.05000	107	70-130	1	25
trans-1,3-Dichloropropene	0.0432	0.0050	mg/kg wet	0.05000	86	70-130	2	25
Trichloroethene	0.0495	0.0050	mg/kg wet	0.05000	99	70-130	2	25
Trichlorofluoromethane	0.0479	0.0050	mg/kg wet	0.05000	96	70-130	2	25
Vinyl Chloride	0.0494	0.0100	mg/kg wet	0.05000	99	70-130	4	25
Xylene O	0.0431	0.0050	mg/kg wet	0.05000	86	70-130	0.5	25
Xylene P,M	0.0882	0.0100	mg/kg wet	0.1000	88	70-130	0.2	25
Xylenes (Total)	0.131	0.0100	mg/kg wet					
Surrogate: 1,2-Dichloroethane-d4	0.0469		mg/kg wet	0.05000	94	70-130		
Surrogate: 4-Bromofluorobenzene	0.0447		mg/kg wet	0.05000	89	70-130		
Surrogate: Dibromofluoromethane	0.0451		mg/kg wet	0.05000	90	70-130		
Surrogate: Toluene-d8	0.0446		mg/kg wet	0.05000	89	70-130		

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS Laboratory Work Order: 1511225

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8082A Polychlorinated Biphenyls (PCB)

Batch CK51718 - 3540C									
Blank									
Aroclor 1016	ND	0.0500	mg/kg wet						
Aroclor 1221	ND	0.0500	mg/kg wet						
Aroclor 1232	ND	0.0500	mg/kg wet						
Aroclor 1242	ND	0.0500	mg/kg wet						
Aroclor 1248	ND	0.0500	mg/kg wet						
Aroclor 1254	0.383	0.0500	mg/kg wet						
Aroclor 1260	ND	0.0500	mg/kg wet						
Aroclor 1262	ND	0.0500	mg/kg wet						
Aroclor 1268	ND	0.0500	mg/kg wet						
Surrogate: Decachlorobiphenyl	0.0226		mg/kg wet	0.02500	90	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0172		mg/kg wet	0.02500	69	30-150			
Surrogate: Tetrachloro-m-xylene	0.0194		mg/kg wet	0.02500	<i>78</i>	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0185		mg/kg wet	0.02500	<i>74</i>	30-150			
LCS									
Aroclor 1016	0.408	0.0500	mg/kg wet	0.5000	82	40-140			
Aroclor 1260	0.410	0.0500	mg/kg wet	0.5000	82	40-140			
Surrogate: Decachlorobiphenyl	0.0221		mg/kg wet	0.02500	88	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0210		mg/kg wet	0.02500	84	30-150			
Surrogate: Tetrachloro-m-xylene	0.0213		mg/kg wet	0.02500	85	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0203		mg/kg wet	0.02500	81	30-150			
LCS Dup									
Aroclor 1016	0.403	0.0500	mg/kg wet	0.5000	81	40-140	1	30	
Aroclor 1260	0.422	0.0500	mg/kg wet	0.5000	84	40-140	3	30	
Surrogate: Decachlorobiphenyl	0.0218		mg/kg wet	0.02500	87	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0218		mg/kg wet	0.02500	87	30-150			
Surrogate: Tetrachloro-m-xylene	0.0209		mg/kg wet	0.02500	83	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0201		mg/kg wet	0.02500	81	30-150			

8100M Total Petroleum Hydrocarbons

Blank			
Decane (C10)	ND	0.2	mg/kg wet
Docosane (C22)	ND	0.2	mg/kg wet
Dodecane (C12)	ND	0.2	mg/kg wet
Eicosane (C20)	ND	0.2	mg/kg wet
Hexacosane (C26)	ND	0.2	mg/kg wet
Hexadecane (C16)	ND	0.2	mg/kg wet
Hexatriacontane (C36)	ND	0.2	mg/kg wet
Nonadecane (C19)	ND	0.2	mg/kg wet

Batch CK51114 - 3546

Nonane (C9)

Octacosane (C28)

185 Frances Avenue, Cranston, RI 02910-2211

ND

ND

Tel: 401-461-7181

mg/kg wet

mg/kg wet

0.2

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS Laboratory Work Order: 1511225

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
, maryce	. KOSUR		al Petroleum			70.120				- Quaro
Batch CK51114 - 3546										
Octadecane (C18)	ND	0.2	mg/kg wet							
Tetracosane (C24)	ND	0.2	mg/kg wet							
Tetradecane (C14)	ND	0.2	mg/kg wet							
Total Petroleum Hydrocarbons	ND	10.0	mg/kg wet							
Friacontane (C30)	ND	0.2	mg/kg wet							
Gurrogate: O-Terphenyl	4.47		mg/kg wet	5.000		89	40-140			
cs										
Decane (C10)	1.8	0.2	mg/kg wet	2.500		74	40-140			
Docosane (C22)	2.3	0.2	mg/kg wet	2.500		91	40-140			
Podecane (C12)	2.0	0.2	mg/kg wet	2.500		81	40-140			
Eicosane (C20)	2.3	0.2	mg/kg wet	2.500		91	40-140			
Hexacosane (C26)	2.3	0.2	mg/kg wet	2.500		93	40-140			
lexadecane (C16)	2.2	0.2	mg/kg wet	2.500		88	40-140			
lexatriacontane (C36)	2.7	0.2	mg/kg wet	2.500		108	40-140			
Ionadecane (C19)	2.3	0.2	mg/kg wet	2.500		93	40-140			
Ionane (C9)	1.6	0.2	mg/kg wet	2.500		63	30-140			
Octacosane (C28)	2.3	0.2	mg/kg wet	2.500		92	40-140			
Octadecane (C18)	2.3	0.2	mg/kg wet	2.500		90	40-140			
etracosane (C24)	2.2	0.2	mg/kg wet	2.500		86	40-140			
etradecane (C14)	2.1	0.2	mg/kg wet	2.500		84	40-140			
Total Petroleum Hydrocarbons	31.3	10.0	mg/kg wet	35.00		90	40-140			
Triacontane (C30)	2.3	0.2	mg/kg wet	2.500		93	40-140			
Surrogate: O-Terphenyl	4.59		mg/kg wet	5.000		92	40-140			
CS Dup			3, 3							
Decane (C10)	2.2	0.2	mg/kg wet	2.500		88	40-140	17	25	
Pocosane (C22)	2.6	0.2	mg/kg wet	2.500		105	40-140	14	25	
Podecane (C12)	2.4	0.2	mg/kg wet	2.500		98	40-140	18	25	
Eicosane (C20)	2.6	0.2	mg/kg wet	2.500		105	40-140	15	25	
Hexacosane (C26)	2.7	0.2	mg/kg wet	2.500		108	40-140	14	25	
Hexadecane (C16)	2.6	0.2	mg/kg wet	2.500		103	40-140	16	25	
lexatriacontane (C36)	3.2	0.2	mg/kg wet	2.500		126	40-140	15	25	
Ionadecane (C19)	2.7	0.2	mg/kg wet	2.500		108	40-140	15	25	
Ionane (C9)	1.8	0.2	mg/kg wet	2.500		74	30-140	16	25	
Octacosane (C28)	2.7	0.2	mg/kg wet	2.500		106	40-140	14	25 25	
• •										
Octadecane (C18)	2.6	0.2	mg/kg wet	2.500		105	40-140	15	25	
Tetracosane (C24)	2.5	0.2	mg/kg wet	2.500		100	40-140	14	25	
etradecane (C14)	2.5	0.2	mg/kg wet	2.500		100	40-140	18	25	
Fotal Petroleum Hydrocarbons Friacontane (C30)	33.9 2.7	10.0 0.2	mg/kg wet mg/kg wet	35.00 2.500		97 107	40-140 40-140	8 14	25 25	
	۷.,	0.2		2.300		207	.0 110			
Surrogate: O-Terphenyl	5.22		mg/kg wet	5.000		104	40-140			

8270D Semi-Volatile Organic Compounds

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

Batch CK51115 - 3546

ESS Laboratory Work Order: 1511225

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270D Semi-Volatile Organic Compounds

Blank			
1,2,4-Trichlorobenzene	ND	0.333	mg/kg wet
1,2-Dichlorobenzene	ND	0.333	mg/kg wet
1,3-Dichlorobenzene	ND	0.333	mg/kg wet
1,4-Dichlorobenzene	ND	0.333	mg/kg wet
2,4,5-Trichlorophenol	ND	0.333	mg/kg wet
2,4,6-Trichlorophenol	ND	0.333	mg/kg wet
2,4-Dichlorophenol	ND	0.333	mg/kg wet
2,4-Dimethylphenol	ND	0.333	mg/kg wet
2,4-Dinitrophenol	ND	1.67	mg/kg wet
,4-Dinitrotoluene	ND	0.333	mg/kg wet
2,6-Dinitrotoluene	ND	0.333	mg/kg wet
-Chloronaphthalene	ND	0.333	mg/kg wet
2-Chlorophenol	ND	0.333	mg/kg wet
-Methylnaphthalene	ND	0.333	mg/kg wet
-Methylphenol	ND	0.333	mg/kg wet
-Nitrophenol	ND	0.333	mg/kg wet
,3´-Dichlorobenzidine	ND	0.667	mg/kg wet
+4-Methylphenol	ND	0.667	mg/kg wet
-Bromophenyl-phenylether	ND	0.333	mg/kg wet
-Chloroaniline	ND	0.667	mg/kg wet
-Nitrophenol	ND	1.67	mg/kg wet
cenaphthene	ND	0.333	mg/kg wet
cenaphthylene	ND	0.333	mg/kg wet
cetophenone	ND	0.667	mg/kg wet
niline	ND	1.67	mg/kg wet
nthracene	ND	0.333	mg/kg wet
zobenzene	ND	0.333	mg/kg wet
enzo(a)anthracene	ND	0.333	mg/kg wet
enzo(a)pyrene	ND	0.167	mg/kg wet
enzo(b)fluoranthene	ND	0.333	mg/kg wet
ienzo(g,h,i)perylene	ND	0.333	mg/kg wet
enzo(k)fluoranthene	ND	0.333	mg/kg wet
is(2-Chloroethoxy)methane	ND	0.333	mg/kg wet
is(2-Chloroethyl)ether	ND	0.333	mg/kg wet
is(2-chloroisopropyl)Ether	ND	0.333	mg/kg wet
is(2-Ethylhexyl)phthalate	ND	0.333	mg/kg wet
Butylbenzylphthalate	ND	0.333	mg/kg wet
Thrysene	ND	0.167	mg/kg wet
ibenzo(a,h)Anthracene	ND	0.167	mg/kg wet
bibenzofuran	ND	0.333	mg/kg wet
Diethylphthalate	ND	0.333	mg/kg wet
Dimethylphthalate	ND	0.333	mg/kg wet
	ND	0.333	mg/kg wet
Di-n-butylphthalate	ND	0.555	mg/kg wee

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS Laboratory Work Order: 1511225

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270D Semi-Volatile Organic Compounds

Batch CK51115 - 3546							
Fluoranthene	ND	0.333	mg/kg wet				
Fluorene	ND	0.333	mg/kg wet				
Hexachlorobenzene	ND	0.333	mg/kg wet				
Hexachlorobutadiene	ND	0.333	mg/kg wet				
lexachloroethane	ND	0.333	mg/kg wet				
ndeno(1,2,3-cd)Pyrene	ND	0.333	mg/kg wet				
sophorone	ND	0.333	mg/kg wet				
laphthalene	ND	0.333	mg/kg wet				
litrobenzene	ND	0.333	mg/kg wet				
I-Nitrosodimethylamine	ND	0.333	mg/kg wet				
entachlorophenol	ND	1.67	mg/kg wet				
henanthrene	ND	0.333	mg/kg wet				
henol	ND	0.333	mg/kg wet				
yrene	ND	0.333	mg/kg wet				
Surrogate: 1,2-Dichlorobenzene-d4	2.43		mg/kg wet	3.333	<i>73</i>	30-130	
Surrogate: 2,4,6-Tribromophenol	3.99		mg/kg wet	5.000	80	30-130	
urrogate: 2-Chlorophenol-d4	3.72		mg/kg wet	5.000	74	30-130	
urrogate: 2-Fluorobiphenyl	2.39		mg/kg wet	3.333	<i>72</i>	30-130	
urrogate: 2-Fluorophenol	3.62		mg/kg wet	5.000	72	30-130	
urrogate: Nitrobenzene-d5	2.71		mg/kg wet	3.333	81	30-130	
urrogate: Phenol-d6	3.91		mg/kg wet	5.000	<i>78</i>	30-130	
urrogate: p-Terphenyl-d14	3.38		mg/kg wet	3.333	101	30-130	
cs							
,2,4-Trichlorobenzene	2.40	0.333	mg/kg wet	3.333	72	40-140	
,2-Dichlorobenzene	2.46	0.333	mg/kg wet	3.333	74	40-140	
,3-Dichlorobenzene	2.43	0.333	mg/kg wet	3.333	73	40-140	
,4-Dichlorobenzene	2.40	0.333	mg/kg wet	3.333	72	40-140	
,4,5-Trichlorophenol	2.79	0.333	mg/kg wet	3.333	84	30-130	
,4,6-Trichlorophenol	2.80	0.333	mg/kg wet	3.333	84	30-130	
,4-Dichlorophenol	2.79	0.333	mg/kg wet	3.333	84	30-130	
,4-Dimethylphenol	2.90	0.333	mg/kg wet	3.333	87	30-130	
,4-Dinitrophenol	2.69	1.67	mg/kg wet	3.333	81	30-130	
,4-Dinitrotoluene	2.81	0.333	mg/kg wet	3.333	84	40-140	
,6-Dinitrotoluene	2.56	0.333	mg/kg wet	3.333	77	40-140	
-Chloronaphthalene	2.23	0.333	mg/kg wet	3.333	67	40-140	
-Chlorophenol	2.58	0.333	mg/kg wet	3.333	77	30-130	
-Methylnaphthalene	2.53	0.333	mg/kg wet	3.333	76	40-140	
-Methylphenol	2.81	0.333	mg/kg wet	3.333	84	30-130	
Nitrophenol	2.89	0.333	mg/kg wet	3.333	87	30-130	
,3´-Dichlorobenzidine	2.38	0.667	mg/kg wet	3.333	71	40-140	
+4-Methylphenol	5.50	0.667	mg/kg wet	6.667	82	30-130	
-Bromophenyl-phenylether	2.78	0.333	mg/kg wet	3.333	83	40-140	
l-Chloroaniline	2.22	0.667	mg/kg wet	3.333	67	40-140	

185 Frances Avenue, Cranston, RI 02910-2211

2.73

2.58

4-Nitrophenol

Acenaphthene

Tel: 401-461-7181 Dependability

mg/kg wet

mg/kg wet

1.67

0.333

Fax: 401-461-4486 Service

82

30-130

40-140

3.333

3.333

Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS Laboratory Work Order: 1511225

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

Batch CK51115 - 3546						
Acenaphthylene	2.52	0.333	mg/kg wet	3.333	76	40-140
cetophenone	2.74	0.667	mg/kg wet	3.333	82	40-140
niline	2.11	1.67	mg/kg wet	3.333	63	40-140
nthracene	2.83	0.333	mg/kg wet	3.333	85	40-140
zobenzene	3.03	0.333	mg/kg wet	3.333	91	40-140
enzo(a)anthracene	2.86	0.333	mg/kg wet	3.333	86	40-140
enzo(a)pyrene	2.85	0.167	mg/kg wet	3.333	86	40-140
enzo(b)fluoranthene	2.87	0.333	mg/kg wet	3.333	86	40-140
enzo(g,h,i)perylene	2.70	0.333	mg/kg wet	3.333	81	40-140
enzo(k)fluoranthene	2.91	0.333	mg/kg wet	3.333	87	40-140
s(2-Chloroethoxy)methane	2.83	0.333	mg/kg wet	3.333	85	40-140
s(2-Chloroethyl)ether	2.75	0.333	mg/kg wet	3.333	82	40-140
s(2-chloroisopropyl)Ether	2.62	0.333	mg/kg wet	3.333	79	40-140
s(2-Ethylhexyl)phthalate	3.03	0.333	mg/kg wet	3.333	91	40-140
utylbenzylphthalate	3.04	0.333	mg/kg wet	3.333	91	40-140
nrysene	2.84	0.167	mg/kg wet	3.333	85	40-140
benzo(a,h)Anthracene	2.78	0.167	mg/kg wet	3.333	84	40-140
benzofuran	2.46	0.333	mg/kg wet	3.333	74	40-140
ethylphthalate	2.68	0.333	mg/kg wet	3.333	81	40-140
methylphthalate	2.64	0.333	mg/kg wet	3.333	79	40-140
-n-butylphthalate	3.00	0.333	mg/kg wet	3.333	90	40-140
-n-octylphthalate	3.14	0.333	mg/kg wet	3.333	94	40-140
uoranthene	2.67	0.333	mg/kg wet	3.333	80	40-140
uorene	2.63	0.333	mg/kg wet	3.333	79	40-140
exachlorobenzene	2.62	0.333	mg/kg wet	3.333	79	40-140
exachlorobutadiene	2.35	0.333	mg/kg wet	3.333	71	40-140
exachloroethane	2.42	0.333	mg/kg wet	3.333	73	40-140
deno(1,2,3-cd)Pyrene	2.76	0.333	mg/kg wet	3.333	83	40-140
ophorone	2.81	0.333	mg/kg wet	3.333	84	40-140
aphthalene	2.59	0.333	mg/kg wet	3.333	78	40-140
trobenzene	2.75	0.333	mg/kg wet	3.333	82	40-140
Nitrosodimethylamine	2.08	0.333	mg/kg wet	3.333	62	40-140
entachlorophenol	3.12	1.67	mg/kg wet	3.333	94	30-130
nenanthrene	2.78	0.333	mg/kg wet	3.333	83	40-140
nenol	2.58	0.333	mg/kg wet	3.333	77	30-130
rrene	3.01	0.333	mg/kg wet	3.333	90	40-140
urrogate: 1,2-Dichlorobenzene-d4	2.50		mg/kg wet	3.333	<i>75</i>	30-130
urrogate: 2,4,6-Tribromophenol	4.58		mg/kg wet	5.000	92	30-130
urrogate: 2-Chlorophenol-d4	3.87		mg/kg wet	5.000	<i>77</i>	30-130
urrogate: 2-Fluorobiphenyl	2.51		mg/kg wet	3.333	<i>75</i>	30-130
urrogate: 2-Fluorophenol	3.72		mg/kg wet	5.000	74	30-130
urrogate: Nitrobenzene-d5	2.79		mg/kg wet	3.333	84	30-130
urrogate: Phenol-d6	4.11		mg/kg wet	5.000	<i>82</i>	30-130
urrogate: p-Terphenyl-d14	3.10		mg/kg wet	3.333	93	30-130
CS Dun						

LCS Dup

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS Laboratory Work Order: 1511225

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270D Semi-Volatile Organic Compounds

Batch CK51115 - 3546									
1,2,4-Trichlorobenzene	2.49	0.333	mg/kg wet	3.333	75	40-140	4	30	
1,2-Dichlorobenzene	2.50	0.333	mg/kg wet	3.333	75	40-140	2	30	
1,3-Dichlorobenzene	2.47	0.333	mg/kg wet	3.333	74	40-140	1	30	
1,4-Dichlorobenzene	2.46	0.333	mg/kg wet	3.333	74	40-140	3	30	
2,4,5-Trichlorophenol	2.96	0.333	mg/kg wet	3.333	89	30-130	6	30	
2,4,6-Trichlorophenol	2.85	0.333	mg/kg wet	3.333	86	30-130	2	30	
2,4-Dichlorophenol	2.87	0.333	mg/kg wet	3.333	86	30-130	3	30	
2,4-Dimethylphenol	2.95	0.333	mg/kg wet	3.333	89	30-130	2	30	
2,4-Dinitrophenol	2.82	1.67	mg/kg wet	3.333	85	30-130	5	30	
2,4-Dinitrotoluene	2.98	0.333	mg/kg wet	3.333	90	40-140	6	30	
2,6-Dinitrotoluene	2.72	0.333	mg/kg wet	3.333	81	40-140	6	30	
2-Chloronaphthalene	2.28	0.333	mg/kg wet	3.333	68	40-140	2	30	
2-Chlorophenol	2.61	0.333	mg/kg wet	3.333	78	30-130	1	30	
2-Methylnaphthalene	2.61	0.333	mg/kg wet	3.333	78	40-140	3	30	
2-Methylphenol	2.83	0.333	mg/kg wet	3.333	85	30-130	1	30	
2-Nitrophenol	2.96	0.333	mg/kg wet	3.333	89	30-130	2	30	
3,3´-Dichlorobenzidine	2.33	0.667	mg/kg wet	3.333	70	40-140	2	30	
3+4-Methylphenol	5.53	0.667	mg/kg wet	6.667	83	30-130	0.7	30	
4-Bromophenyl-phenylether	2.77	0.333	mg/kg wet	3.333	83	40-140	0.06	30	
4-Chloroaniline	2.30	0.667	mg/kg wet	3.333	69	40-140	3	30	
4-Nitrophenol	2.81	1.67	mg/kg wet	3.333	84	30-130	3	30	
Acenaphthene	2.66	0.333	mg/kg wet	3.333	80	40-140	3	30	
Acenaphthylene	2.63	0.333	mg/kg wet	3.333	79	40-140	4	30	
Acetophenone	2.77	0.667	mg/kg wet	3.333	83	40-140	1	30	
Aniline	2.15	1.67	mg/kg wet	3.333	64	40-140	1	30	
Anthracene	2.84	0.333	mg/kg wet	3.333	85	40-140	0.3	30	
Azobenzene	3.01	0.333	mg/kg wet	3.333	90	40-140	0.9	30	
Benzo(a)anthracene	2.85	0.333	mg/kg wet	3.333	86	40-140	0.01	30	
Benzo(a)pyrene	2.92	0.167	mg/kg wet	3.333	88	40-140	3	30	
Benzo(b)fluoranthene	2.90	0.333	mg/kg wet	3.333	87	40-140	0.9	30	
Benzo(g,h,i)perylene	2.82	0.333	mg/kg wet	3.333	85	40-140	4	30	
Benzo(k)fluoranthene	2.98	0.333	mg/kg wet	3.333	89	40-140	2	30	
bis(2-Chloroethoxy)methane	2.88	0.333	mg/kg wet	3.333	86	40-140	2	30	
bis(2-Chloroethyl)ether	2.78	0.333	mg/kg wet	3.333	83	40-140	0.9	30	
bis(2-chloroisopropyl)Ether	2.67	0.333	mg/kg wet	3.333	80	40-140	2	30	
bis(2-Ethylhexyl)phthalate	3.06	0.333	mg/kg wet	3.333	92	40-140	1	30	
Butylbenzylphthalate	3.14	0.333	mg/kg wet	3.333	94	40-140	3	30	
Chrysene	2.89	0.167	mg/kg wet	3.333	87	40-140	2	30	

185 Frances Avenue, Cranston, RI 02910-2211

2.89

2.56

2.82

2.75

3.04

3.17

2.67

0.167

0.333

0.333

0.333

0.333

0.333

0.333

Dibenzo(a,h)Anthracene

Dibenzofuran

Diethylphthalate

Dimethylphthalate

Di-n-butylphthalate

Di-n-octylphthalate

Fluoranthene

Tel: 401-461-7181

mg/kg wet

3.333

3.333

3.333

3.333

3.333

3.333

3.333

Fax: 401-461-4486

87

77

85

83

95

40-140

40-140

40-140

40-140

40-140

40-140

40-140

http://www.ESSLaboratory.com

4

5

8.0

0.1

30

30

30

30

30

30

30

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS Laboratory Work Order: 1511225

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	3	3270D Semi	-Volatile Org	anic Com	pounds					
Batch CK51115 - 3546										
Fluorene	2.74	0.333	mg/kg wet	3.333		82	40-140	4	30	_
Hexachlorobenzene	2.63	0.333	mg/kg wet	3.333		79	40-140	0.04	30	
Hexachlorobutadiene	2.42	0.333	mg/kg wet	3.333		73	40-140	3	30	
Hexachloroethane	2.47	0.333	mg/kg wet	3.333		74	40-140	2	30	
Indeno(1,2,3-cd)Pyrene	2.87	0.333	mg/kg wet	3.333		86	40-140	4	30	
Isophorone	2.88	0.333	mg/kg wet	3.333		87	40-140	3	30	
Naphthalene	2.65	0.333	mg/kg wet	3.333		80	40-140	2	30	
Nitrobenzene	2.78	0.333	mg/kg wet	3.333		83	40-140	1	30	
N-Nitrosodimethylamine	2.14	0.333	mg/kg wet	3.333		64	40-140	3	30	
Pentachlorophenol	2.98	1.67	mg/kg wet	3.333		90	30-130	4	30	
Phenanthrene	2.79	0.333	mg/kg wet	3.333		84	40-140	0.3	30	
Phenol	2.63	0.333	mg/kg wet	3.333		79	30-130	2	30	
Pyrene	3.10	0.333	mg/kg wet	3.333		93	40-140	3	30	
Surrogate: 1,2-Dichlorobenzene-d4	2.48		mg/kg wet	3.333		<i>75</i>	30-130			
Surrogate: 2,4,6-Tribromophenol	4.52		mg/kg wet	5.000		90	30-130			
Surrogate: 2-Chlorophenol-d4	3.81		mg/kg wet	5.000		76	30-130			
Surrogate: 2-Fluorobiphenyl	<i>2.54</i>		mg/kg wet	3.333		76	30-130			
Surrogate: 2-Fluorophenol	3.69		mg/kg wet	5.000		74	30-130			
Surrogate: Nitrobenzene-d5	2.70		mg/kg wet	3.333		81	30-130			
Surrogate: Phenol-d6	4.08		mg/kg wet	5.000		82	30-130			
Surrogate: p-Terphenyl-d14	3.12		mg/kg wet	3.333		94	30-130			
		C	Classical Cher	nistry						
Batch CK51404 - General Preparation										
Reference										
Flashpoint	82		°F	81.00		101	97.9-102.1			
Batch CK51406 - General Preparation										
Blank										
Conductivity	ND	5	umhos/cm							
LCS				4.4.4		44.	20 :::			
Conductivity	1420		umhos/cm	1411		101	90-110			
Batch CK51410 - General Preparation										
Blank										
Reactive Cyanide	ND	2.0	mg/kg							
Reactive Sulfide	ND	2.0	mg/kg							
LCS										
Reactive Cyanide	4.0	2.0	mg/kg	100.3		4	0.68-5.41			

0.2

Reactive Sulfide

mg/kg

0-44

2.0

10.00

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1511225

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

Notes and Definitions

Z17	Temperature is within 23 +/-2 °C.
Z-10	Soil pH measured in water at 15.7 °C.
W/I	Results obtained from a deignized water

Results obtained from a deionized water leach of the sample.

U Analyte included in the analysis, but not detected O Calibration required quadratic regression (Q).

IC Internal Standard(s) outside of criteria. Sample was reanalyzed to confirm (IC).

D+ Relative percent difference for duplicate is outside of criteria (D+).

D Diluted.

CD+ Continuing Calibration %Diff/Drift is above control limit (CD+).

B+Blank Spike recovery is above upper control limit (B+).

В Present in Method Blank (B).

Greater than.

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference MDL Method Detection Limit MRL Method Reporting Limit LOD Limit of Detection LOO Limit of Quantitation DL **Detection Limit** I/V Initial Volume F/V Final Volume

Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Results reported as a mathematical average. Avg

No Recovery NR

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1511225

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp-services/labcert/documents/AllLabs.xls

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.depweb.state.pa.us/portal/server.pt/community/labs/13780/laboratory accreditation program/590095

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Sample and Cooler Receipt Checklist

Client: GZA GeoEnvironmental, Inc.

Client Project ID: _

Shipped/Delivered Via: ESS Courier

ESS Project ID: <u>15110225</u> Date Project Due: 11/17/15 Days For Project: 5 Day

By whom? _____

Items to be checked upon receipt:

1. Air Bill Manifest Present?	* No	10 Are the complete and	
Air No.:		10. Are the samples properly preserved?	Yes
		11. Proper sample containers used?	Yes
2. Were Custody Seals Present?	No	12. Any air bubbles in the VOA vials?	N/A
3. Were Custody Seals Intact?	N/A	13. Holding times exceeded?	No
4. Is Radiation count < 100 CPM?	Yes	14. Sufficient sample volumes?	Yes
5. Is a cooler present?	Yes	15. Any Subcontracting needed?	No
Cooler Temp: 2.0		16. Are ESS labels on correct containers?	YesiNo
Iced With: Ice		17. Were samples received intact?	Yes No
6. Was COC included with samples?	Yes	ESS Sample IDs:	
7. Was COC signed and dated by client?	Yes	Sub Lab:	
8. Does the COC match the sample	Yes	Analysis:	_
9. Is COC complete and correct?	Yes	TAT:	
18. Was there need to call project manage			_
	<u> </u>	Frozen @ 2120 Jt 11/10/15	
Who was called?:		By whom?	

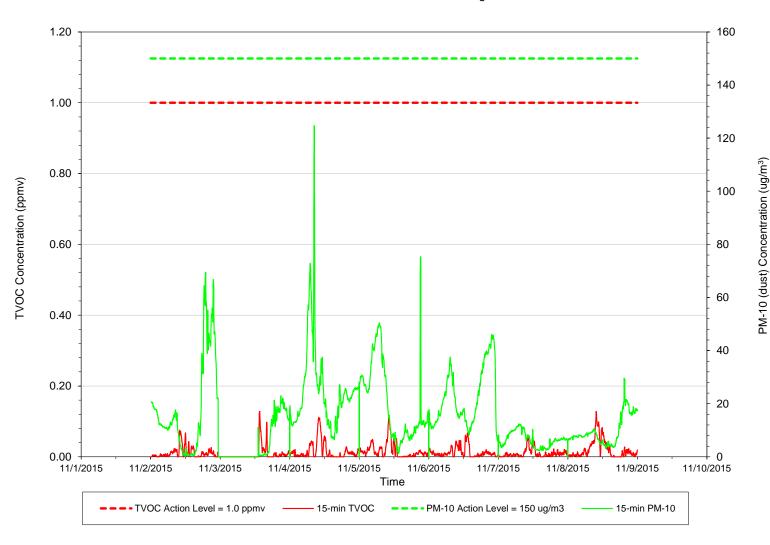
Sample Number	Properly Preserved	Container Type	# of Containers	Preservative	
Completed By:		4 oz Soil Jar 40 ml - VOA 40 ml - VOA ate/Time: <u>/////</u> ate/Time: <u>//</u> ///	5 1 2 2051	NP MeOH other	

	- 0						_						
	ESS Laboratory			CHAIN OF CUSTODY	F CUST	YOO.		ESS Lab#		1511225	₩		
	Division of Thielsch Engineering, Inc.	Inc.	Turn Time		her								T
•	185 Frances Avenue, Cranston RI 02910-2211	02910-2211	Regulatory State:	State: (MA) RI CT NH NJ NY ME Other	NY ME Othe	35		č	Reporting Limits -	mits -			•
	www.esslaboratory.com	1-4486	MA-MCP	or any of the fol Navy USAC	cirde) Other			Elect	Electonic Deliverables		Excel Acce	Access (PDF)	
	Contact Person		Project # 171521	1-41 Project Name	1 Everen	++			ar,	F			
	Matthew Im, th		Proj. Location EVeres	+, MA	1 Hb	MY HOUSEN T	<i>></i>	sisy	17 8			~ y	7
	249 Vandabilt Am	City State	City, State None J. M.A.	20 diz	2	# Od		ilsnA	fun	0		W.	Yu
	Tel. 781 -483 -1671	email: Mat	thes. Sm	email: Matthewson, the Cotto con						29		hl	40
	ESS Lab ID Date Collection Time		Matrix	Sample ID	Pres Code	# of Containers	Type of Container	Vol of Container		78	7d d] Ud	d7W	ary
	11/10/245 1030	4	PM B	15t Content 1	1,2,4			40 h Ch		$\frac{1}{\times}$		\times	
	11/10/2012 1030	8	7	UST Centents 2	9'1'	8		100 Ju 0001				$\stackrel{>}{>}$	×
-									-		-		1
										ļ	-		
										-	<u> </u>		Ţ
											-		
									-	 - -			
	Container Type: P-Poly G-Glass AG-Amber Glass S-Sterile V-VOA	rile V-VOA		Matrix: S-Soil SD-Solid D-Sludge WW-Wastewater GW-Groundwater SW-Surface Water DW-Drinking Water O-Oil Wuxings E Ellison	WW-Wastewater G	W-Groundwater	SW-Surface	Nater DW-Drink	ing Water O-	Oil W-Wines			Ţ
	Ħ	8	Internal Use Only		de: (JtnP,(2-HC),	3-H2SO4(4-H	NO3, 5-Na	эн, Өмеон, 7	-Asorbic Ac	id, 8-ZnAct	-6 t		T
	Seals Intact Yes No NA:		[] Pickup	Sampled by:	1: KIP V	Kip Webbe							
	Cooler Temperature: $\chi_{\mathcal{O}}$ is e	<u>c</u> e .	[] Technician	an Comments:	Ì	TLLP based	ž	20x	Me	,			
<u> </u>	Kelingusined by: (Signature, Pale & Time)	Received by: (Sign	Received by: (Signature, Date & Time)	11/10/12	Relinquished by	Relinquished by: (Signature, Date & Time)	& Time)	1, 1,0/15 Rec	Received by: (Sign	: (Signature, Date & Time)	& Time)	3/19/1/5	
	11/10/2015 1230 Relinquished by: (Signature, Date & Time)	Received In Sin	Perceived by Samuel Date The	15:37	they &	P. Bre	. 18	-,4	De la	$\frac{1}{2}$	540%	, _V	·
			rame, para a tane)		Refinquished by:	Relinquished by: (Signature, Date & Time)	s&Time)	Rece	Received by: (Signature, Date & Time)	nature, Date 8	& Time)		
Page													
25.0	* By droling MA-MCP, client acknowledges sampels were	•	-	Please fax to the laboratory all changes to Chain of Custody	hanges to Cha	in of Custod]

Page 35 of 35

collected in accordance with MADEP CAM VIIA

Please fax to the laboratory all changes to Chain of Custody
Report Method Blank & Laboratory Control Sample Results


Proactive by Design

APPENDIX D

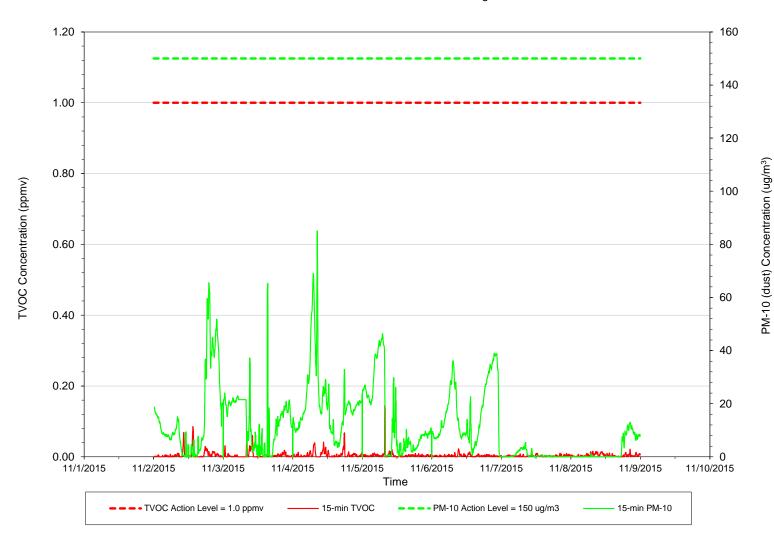
AIRLOGICS WEEKLY REPORTS

Perimeter Air Monitoring Station - STA 1

15-minute average concentrations

Data Summary Statistics	
TVOC Avg = PM-10 Avg =	0.01 17.18
Daily	

Weekly


Data Summary Statistics		
TVOC max =	(15Min Avg)	
11/2/2015	0.07	
11/3/2015	0.13	
11/4/2015	0.11	
11/5/2015	0.11	
11/6/2015	0.07	
11/7/2015	0.06	
11/8/2015	0.13	
PM10 max=	(15Min Avg)	
11/2/2015	#DIV/0!	
11/3/2015	23.02	
11/4/2015	124.76	
11/5/2015	75.33	
11/6/2015	46.14	
11/7/2015	12.38	
11/8/2015	29.67	

Wind Summary Statistics		
CALM	0%	
UW	8%	
UW/CW	0%	
CW	73%	
CW/DW	0%	
DW	7%	
DW/CW	10%	
CW/UW	1%	
TOTAL	100%	

Perimeter Air Monitoring Station - STA 2

15-minute average concentrations

TVOC Avg = PM-10 Avg =	0.01 12.01
Daily	
Data Summary	Statistics
TVOC max =	(15Min Avg)
11/2/2015	0.09
11/3/2015	0.06
11/4/2015	0.07
11/5/2015	0.14
11/6/2015	0.02
11/7/2015	0.01
11/8/2015	0.02
PM10 max=	(15Min Avg)

11/2/2015

11/3/2015

11/4/2015

11/5/2015

11/6/2015

11/7/2015

11/8/2015

65.58

65.25

85.00

46.40

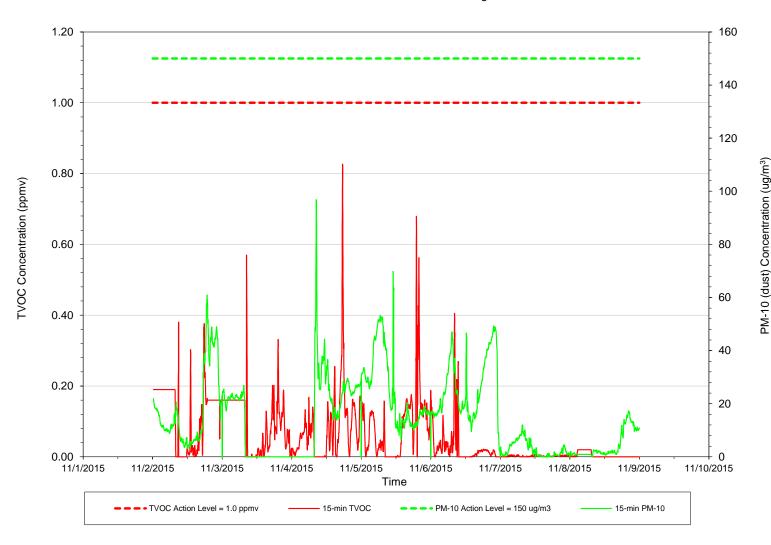
38.99

5.44

13.02

Data Summary Statistics

Weekly


Wind Summary Statistics	
CALM	0%
UW	8%
UW/CW	0%
CW	0%
CW/DW	0%
DW	80%
DW/CW	4%
CW/UW	8%
TOTAL	100%

Filename: J:\170,000-179,999\171521\171521-41.MMS\Field Work\Air Monitoring\AirLogics Weekly Summary Reports\11.2&9.2015 WeeklyData\STA2_WEEKLYDEMAND.xls

Perimeter Air Monitoring Station - STA 3

15-minute average concentrations

TVOC Avg = PM-10 Avg =	0.10 14.63
Daily	
Data Summary	Statistics
TVOC max =	(15Min Avg)
11/2/2015	0.38
11/3/2015	0.57
11/4/2015	0.83
11/5/2015	0.68
11/6/2015	0.41
11/7/2015	0.01

11/8/2015

11/2/2015

11/3/2015

11/4/2015

11/5/2015

11/6/2015

11/7/2015

11/8/2015

PM10 max= (15Min Avg)

0.02

60.91

26.91

96.86

69.79

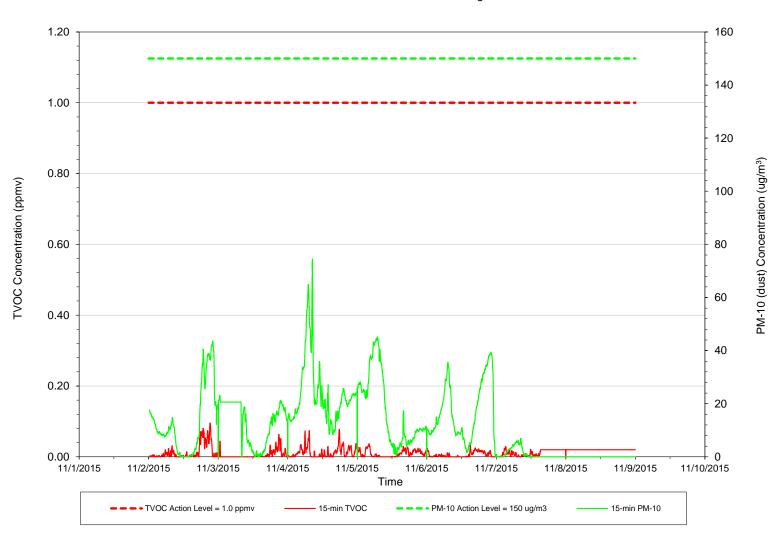
49.17

11.99

17.21

Data Summary Statistics

Weekly


Wind Summary Statistics	
CALM	0%
UW	5%
UW/CW	0%
CW	3%
CW/DW	5%
DW	86%
DW/CW	1%
CW/UW	0%
TOTAL	100%

AIRLOGICS, LLC
PERIMETER AIR MONITORING SYSTEMS
PROACTIVE BY DESIGN

Filename: J:\170,000-179,999\171521\171521-41.MMS\Field Work\Air Monitoring\AirLogics Weekly Summary Reports\11.2&9.2015 WeeklyData\STA3_WEEKLYDEMAND.xls

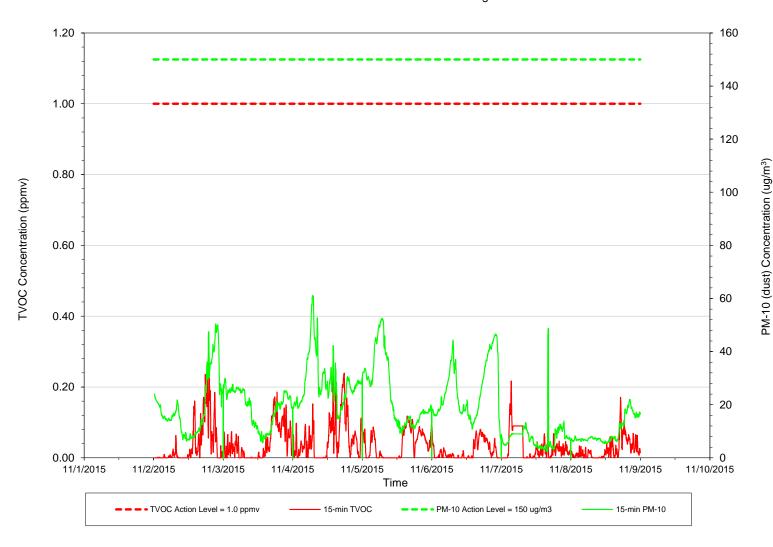
Perimeter Air Monitoring Station - STA 4

15-minute average concentrations

TVOC Avg = PM-10 Avg =	0.01 12.27
Daily	
Data Summary	Statistics
TVOC max =	(15Min Av

Data Summary Statistics

Weekly


Data Summary	Statistics
TVOC max =	(15Min Avg)
11/2/2015	0.10
11/3/2015	0.06
11/4/2015	0.08
11/5/2015	0.04
11/6/2015	0.03
11/7/2015	0.03
11/8/2015	0.02
PM10 max=	(15Min Avg)
11/2/2015	43.64
11/3/2015	23.06
11/4/2015	74.43
11/5/2015	45.12
11/6/2015	39.28
11/7/2015	6.91
11/8/2015	0.00

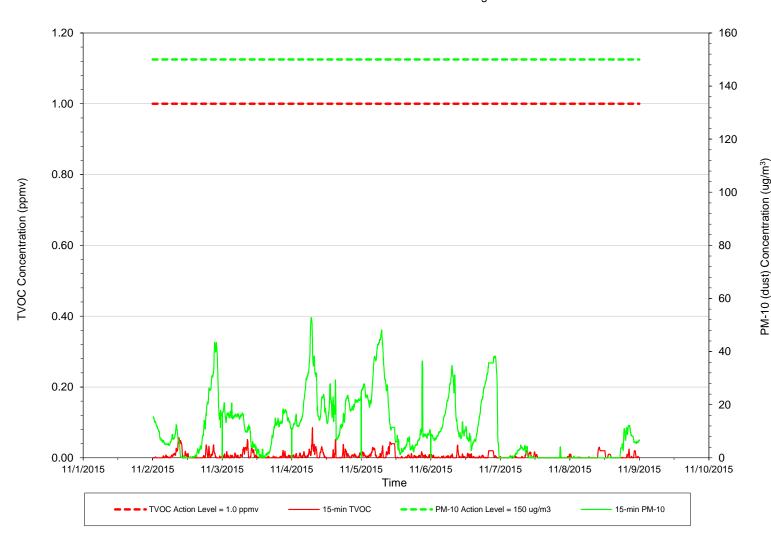
Wind Summary Statistics	
,	
CALM	0%
UW	36%
UW/CW	0%
CW	0%
CW/DW	0%
DW	4%
DW/CW	0%
CW/UW	60%
TOTAL	100%

Perimeter Air Monitoring Station - STA 5

15-minute average concentrations

Data Summary Statistics	
TVOC Avg = PM-10 Avg =	0.04 19.16

Weekly


Daily		
Data Summary Statistics		
TVOC max =	(15Min Avg)	
11/2/2015	0.26	
11/3/2015	0.19	
11/4/2015	0.24	
11/5/2015	0.12	
11/6/2015	0.10	
11/7/2015	0.22	
11/8/2015	0.17	
PM10 max=	(15Min Avg)	
11/2/2015	50.44	
11/3/2015	29.92	
11/4/2015	61.17	
11/5/2015	52.51	
11/6/2015	46.59	
11/7/2015	48.70	
11/8/2015	22.03	

Wind Summary Statistics		
CALM	0%	
UW	10%	
UW/CW	0%	
CW	0%	
CW/DW	0%	
DW	3%	
DW/CW	0%	
CW/UW	87%	
TOTAL	100%	

Perimeter Air Monitoring Station - STA 6

15-minute average concentrations

TVOC Avg = PM-10 Avg =	0.01 11.15
Daily	
Data Summary	Statistics
TVOC max =	(15Min Avg)
11/2/2015	0.06
11/3/2015	0.05
11/4/2015	0.08
11/5/2015	0.04
11/6/2015	0.04
11/7/2015	0.02
11/8/2015	0.03

PM10 max= (15Min Avg)

43.52

20.79

52.82

48.13

38.27

12.21

4.76

11/2/2015

11/3/2015

11/4/2015

11/5/2015

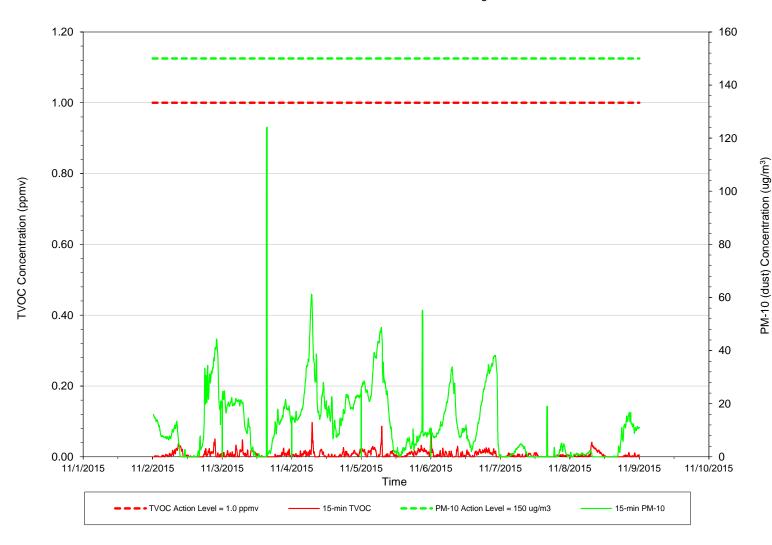
11/6/2015

11/7/2015

11/8/2015

Data Summary Statistics

Weekly


Wind Summary Statistics	
CALM	0%
UW	0%
UW/CW	0%
CW	11%
CW/DW	0%
DW	4%
DW/CW	0%
CW/UW	84%
TOTAL	100%

Filename: J:\170,000-179,999\171521\171521-41.MMS\Field Work\Air Monitoring\AirLogics Weekly Summary Reports\11.2&9.2015 WeeklyData\STA6_WEEKLYDEMAND.xls

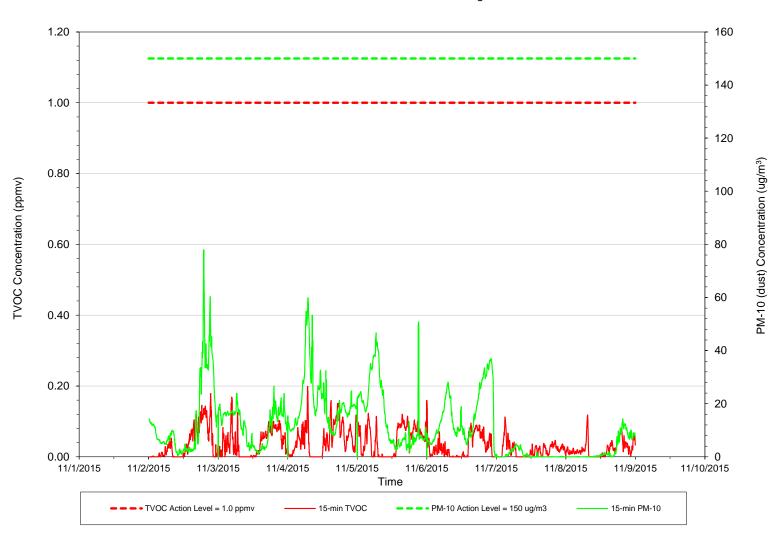
Perimeter Air Monitoring Station - STA 7

15-minute average concentrations

TVOC Avg =	0.01
PM-10 Avg =	12.05
Daily	tatiatiaa

Data Summary Statistics

Weekly


Data Summary Statistics		
TVOC max =	(15Min Avg)	
11/2/2015	0.05	
11/3/2015	0.05	
11/4/2015	0.10	
11/5/2015	0.09	
11/6/2015	0.07	
11/7/2015	0.01	
11/8/2015	0.04	
PM10 max=	(15Min Avg)	
PM10 max= 11/2/2015	(15Min Avg) 44.35	
	٠,	
11/2/2015	44.35	
11/2/2015 11/3/2015	44.35 124.10	
11/2/2015 11/3/2015 11/4/2015	44.35 124.10 61.19	
11/2/2015 11/3/2015 11/4/2015 11/5/2015	44.35 124.10 61.19 55.22	
11/2/2015 11/3/2015 11/4/2015 11/5/2015 11/6/2015	44.35 124.10 61.19 55.22 38.19	

Wind Summary Statistics		
CALM	0%	
UW	3%	
UW/CW	0%	
CW	0%	
CW/DW	0%	
DW	10%	
DW/CW	7%	
CW/UW	80%	
TOTAL	100%	

Perimeter Air Monitoring Station - STA 8

15-minute average concentrations

TVOC Avg = 0.04 PM-10 Avg = 11.58 Daily Data Summary Statistics TVOC max = (15Min Avg) 11/2/2015 0.18 11/3/2015 0.17 0.20 11/4/2015 11/5/2015 0.16 11/6/2015 0.16 11/7/2015 0.11 11/8/2015 0.12 PM10 max= (15Min Avg) 11/2/2015 77.98 26.62 11/3/2015 11/4/2015 59.89 11/5/2015 50.76

11/6/2015

11/7/2015

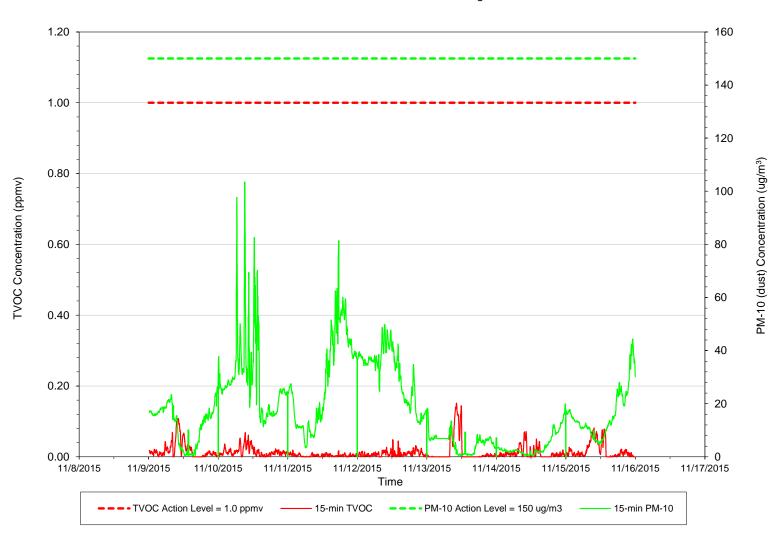
11/8/2015

Data Summary Statistics

Weekly

Wind Summary Statistics	
CALM	0%
UW	3%
UW/CW	0%
CW	0%
CW/DW	0%
DW	10%
DW/CW	7%
CW/UW	80%
TOTAL	100%

36.85 4.96


14.23

Filename: J:\170,000-179,999\171521\171521-41.MMS\Field Work\Air Monitoring\AirLogics Weekly Summary Reports\11.2&9.2015 WeeklyData\STA8_WEEKLYDEMAND.xls

Perimeter Air Monitoring Station - STA 1

15-minute average concentrations

TVOC Avg = PM-10 Avg =	0.01 18.21
Daily	
Data Summary	Statistics
TVOC max =	(15Min Avg)
11/9/2015	0.11
11/10/2015	0.07
11/11/2015	0.02

11/12/2015

11/13/2015

11/14/2015

11/15/2015

11/9/2015

11/10/2015 11/11/2015

11/12/2015

11/13/2015

11/14/2015

11/15/2015

PM10 max= (15Min Avg)

0.05

0.15

0.07 0.08

28.55 103.54

81.39

49.87

18.34

19.87

44.36

Data Summary Statistics

Weekly


11/10/2010	11.00	
Wind Summary Statistics		
CALM	0%	
UW	28%	
UW/CW	0%	
CW	62%	
CW/DW	1%	
DW	5%	
DW/CW	3%	
CW/UW	1%	
TOTAL	100%	

AIRLOGICS, LLC
PERIMETER AIR MONITORING SYSTEMS
PROACTIVE BY DESIGN

Filename: J:\170,000-179,999\171521\171521-41.MMS\Field Work\Air Monitoring\AirLogics Weekly Summary Reports\11.2&9.2015 WeeklyData\STA1_WEEKLYDEMAND.xls

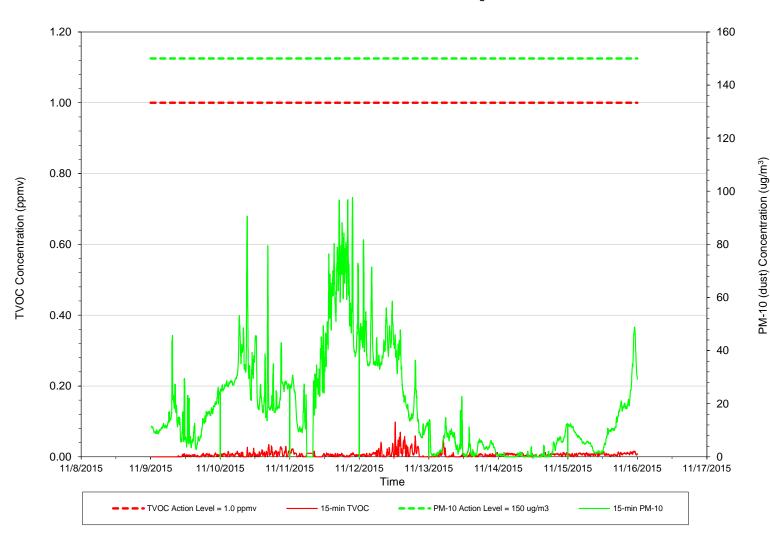
Perimeter Air Monitoring Station - STA 2

15-minute average concentrations

Weekly
Data Summary Statistics

TVOC Avg =	0.01
PM-10 Avg =	17.13

Daily


Data Summary Statistics		
TVOC max =	(15Min Avg)	
11/9/2015	0.02	
11/10/2015	0.05	
11/11/2015	0.05	
11/12/2015	0.06	
11/13/2015	0.02	
11/14/2015	0.02	
11/15/2015	0.05	
PM10 max=	(15Min Avg)	
11/9/2015	18.85	
11/10/2015	131.79	
11/11/2015	135.32	
11/12/2015	43.37	
11/13/2015	8.14	
11/14/2015	10.38	
11/15/2015	16.74	

Wind Summary Statistics	
CALM	0%
UW	27%
UW/CW	0%
CW	0%
CW/DW	0%
DW	65%
DW/CW	2%
CW/UW	6%
TOTAL	100%

Perimeter Air Monitoring Station - STA 3

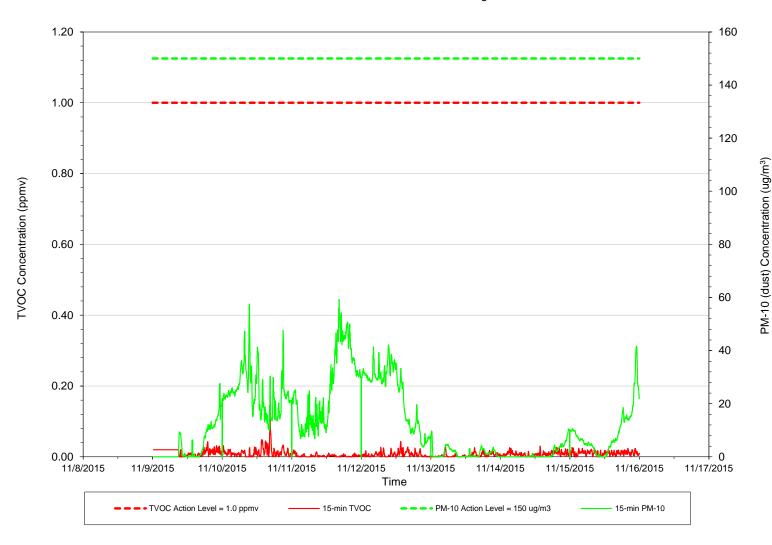
15-minute average concentrations

vveekiy	
Data Summary Stati	stics

TVOC Avg =	0.01
PM-10 Avg =	19.02

Daily

Data Summary	Statistics
TVOC max =	(15Min Avg)
11/9/2015	0.01
11/10/2015	0.03
11/11/2015	0.02
11/12/2015	0.10
11/13/2015	0.05
11/14/2015	0.01
11/15/2015	0.02
PM10 max=	(15Min Avg)
PM10 max= 11/9/2015	(15Min Avg) 45.66
11/9/2015	45.66
11/9/2015 11/10/2015	45.66 90.65
11/9/2015 11/10/2015 11/11/2015	45.66 90.65 97.61
11/9/2015 11/10/2015 11/11/2015 11/12/2015	45.66 90.65 97.61 81.78
11/9/2015 11/10/2015 11/11/2015 11/12/2015 11/13/2015	45.66 90.65 97.61 81.78 22.72


14/: 10	0: :: ::
Wind Summary Statistics	
CALM	0%
UW	13%
UW/CW	0%
CW	4%
CW/DW	1%
DW	79%
DW/CW	2%
CW/UW	0%
TOTAL	100%

Filename: J:\170,000-179,999\171521\171521-41.MMS\Field Work\Air Monitoring\AirLogics Weekly Summary Reports\11.2&9.2015 WeeklyData\STA3_WEEKLYDEMAND.xls

Perimeter Air Monitoring Station - STA 4

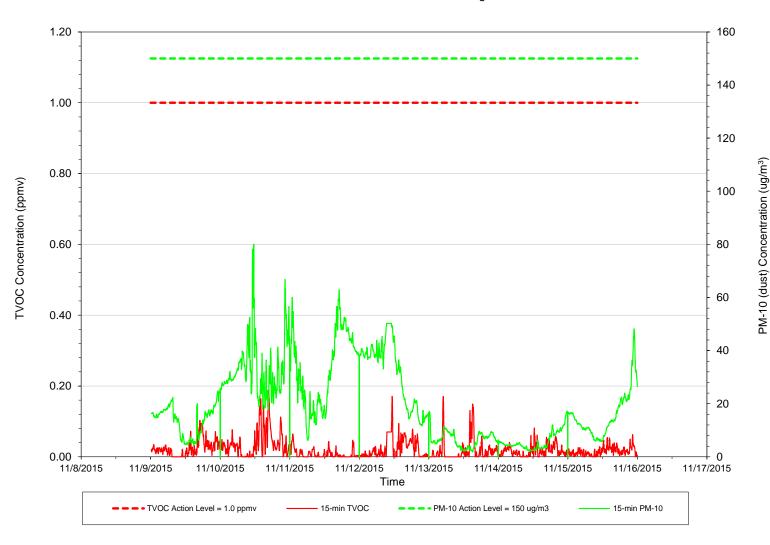
15-minute average concentrations

Weekly
Data Summary Statistics

TVOC Avg = 0.01PM-10 Avg = 12.70

Daily

Data Summary	Statistics
TVOC max =	(15Min Avg)
11/9/2015	0.04
11/10/2015	0.11
11/11/2015	0.02
11/12/2015	0.04
11/13/2015	0.03
11/14/2015	0.03
11/15/2015	0.03
PM10 max=	(15Min Avg)
11/9/2015	27.69
11/10/2015	57.50
11/11/2015	59.23
11/12/2015	42.13
11/13/2015	9.65
11/14/2015	10.41
11/15/2015	41.63


Wind Summary Statistics					
CALM	0%				
UW	24%				
UW/CW	0%				
CW	0%				
CW/DW	0%				
DW	21%				
DW/CW	0%				
CW/UW	55%				
TOTAL	100%				

Filename: J:\170,000-179,999\171521\171521-41.MMS\Field Work\Air Monitoring\AirLogics Weekly Summary Reports\11.2&9.2015 WeeklyData\STA4_WEEKLYDEMAND.xls

Perimeter Air Monitoring Station - STA 5

15-minute average concentrations

TVOC Avg = 0.02 PM-10 Avg = 19.88 Daily **Data Summary Statistics** TVOC max = (15Min Avg) 11/9/2015 0.10 11/10/2015 0.19 11/11/2015 0.06 11/12/2015 0.17 11/13/2015 0.17 11/14/2015 0.08 11/15/2015 0.06 PM10 max= (15Min Avg) 11/9/2015 25.53 80.02 11/10/2015

11/11/2015

11/12/2015

11/13/2015

11/14/2015

11/15/2015

Data Summary Statistics

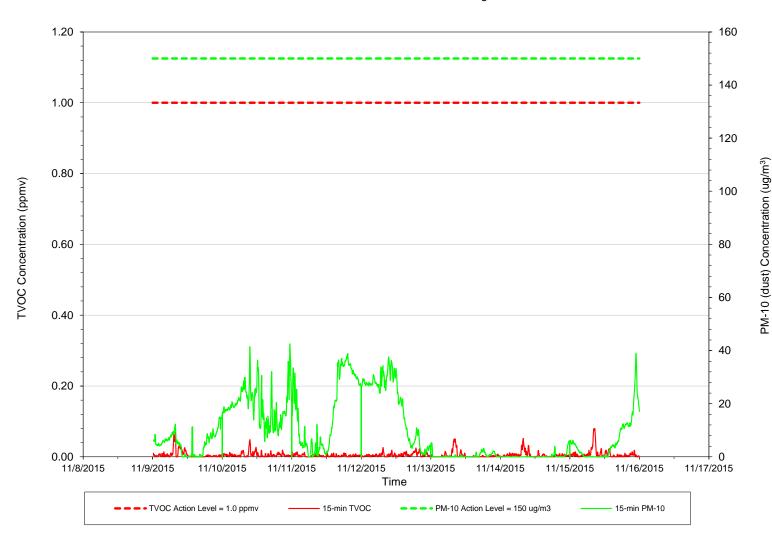
Weekly

Wind Summary Statistics					
CALM	0%				
UW	17%				
UW/CW	0%				
CW	0%				
CW/DW	0%				
DW	16%				
DW/CW	0%				
CW/UW	67%				
TOTAL	100%				

62.91

50.27

17.20 17.19


48.23

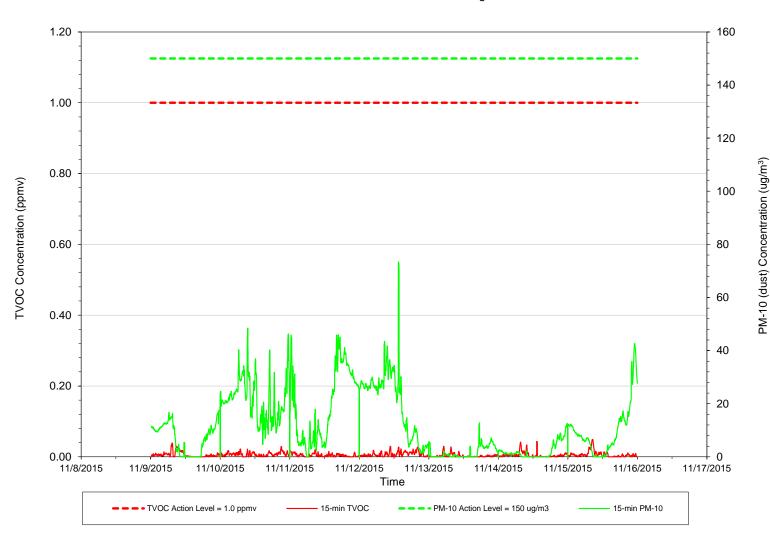
Filename: J:\170,000-179,999\171521\171521-41.MMS\Field Work\Air Monitoring\AirLogics Weekly Summary Reports\11.2&9.2015 WeeklyData\STA5_WEEKLYDEMAND.xls

Perimeter Air Monitoring Station - STA 6

15-minute average concentrations

Data Summary	Statistics
TVOC Avg =	0.01
PM-10 Avg =	9.69
Daily	
Data Summary	
TVOC max =	(15Min Avg)
11/9/2015	0.07
11/10/2015	0.05
11/11/2015	0.01
11/12/2015	0.03
11/13/2015	0.05
11/14/2015	0.05
11/15/2015	0.08
PM10 max=	(15Min Avg)
11/9/2015	15.84
11/10/2015	42.50
11/11/2015	38.79
11/12/2015	37.56
11/13/2015	5.31
11/14/2015	6.05
11/15/2015	39.03

Weekly


Wind Summary Statistics					
CALM	0%				
UW	0%				
UW/CW	0%				
CW	22%				
CW/DW	2%				
DW	10%				
DW/CW	0%				
CW/UW	66%				
TOTAL	100%				

Filename: J:\170,000-179,999\171521\171521-41.MMS\Field Work\Air Monitoring\AirLogics Weekly Summary Reports\11.2&9.2015 WeeklyData\STA6_WEEKLYDEMAND.xls

Perimeter Air Monitoring Station - STA 7

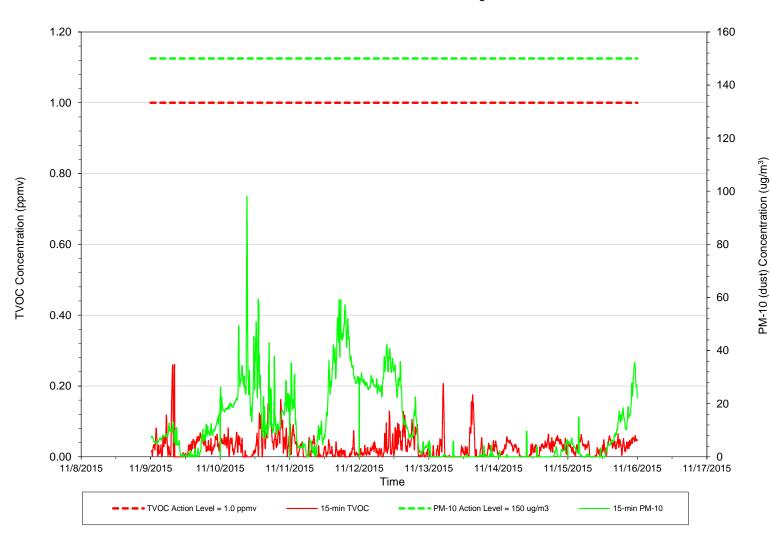
15-minute average concentrations

TVOC Avg = 0.01
PM-10 Avg = 11.79

Weekly

Daily

Data Summary Statistics TVOC max = (15Min Avg)11/9/2015 0.04 11/10/2015 0.03 0.02 11/11/2015 0.03 11/12/2015 11/13/2015 0.03 11/14/2015 0.04 11/15/2015 0.05 PM10 max= (15Min Avg) 11/9/2015 21.28 48.43 11/10/2015 11/11/2015 45.90 11/12/2015 73.47 11/13/2015 12.78 12.59 11/14/2015 11/15/2015 42.63


Wind Summary Statistics						
CALM	0%					
UW	14%					
UW/CW	0%					
CW	0%					
CW/DW	2%					
DW	17%					
DW/CW	2%					
CW/UW	65%					
TOTAL	100%					

Filename: J:\170,000-179,999\171521\171521-41.MMS\Field Work\Air Monitoring\AirLogics Weekly Summary Reports\11.2&9.2015 WeeklyData\STA7_WEEKLYDEMAND.xls

Perimeter Air Monitoring Station - STA 8

15-minute average concentrations

TVOC Avg = PM-10 Avg =	0.03 11.53
Daily	
Data Summary Sta	atistics
TVOC max = $(1$	5Min Av
11/9/2015	0.2

Data Summary Statistics

Weekly

11/9/2015	0.26
11/10/2015	0.16
11/11/2015	0.09
11/12/2015	0.13
11/13/2015	0.21
11/14/2015	0.06
11/15/2015	0.07
PM10 max=	(15Min Avg)
11/9/2015	21.81
11/10/2015	98.13
11/11/2015	59.16
11/12/2015	42.39
11/13/2015	6.03
11/14/2015	9.56
11/15/2015	35.54
M:1 O	0: :: ::

Wind Summary Statistics					
CALM	0%				
UW	14%				
UW/CW	0%				
CW	0%				
CW/DW	2%				
DW	17%				
DW/CW	2%				
CW/UW	65%				
TOTAL	100%				

System C	Operations		General Observations							
Sampling Date	11/2/2015		General Weather	General Weather Conditions						
System Start Time	cont.		 Partly sunny 	Partly sunny						
System Stop Time	cont.		■ 40s-60s	• 40s-60s						
			 Light winds 							
Total Hours Monitored	24			ion of Site Activiti	es					
			 General site p 							
System Calibrations		alibrated	 Excavation of 	f decontamination	area					
(Time/Status)	0700-0830		-							
			<u> </u>		System Alarm Log					
		Station		[TVOC/Dust]	[TVOC/Dust]	Total # of	Comments/	Site Person/Time		
Alarm Level	Time	No.	Alarm Location	15-min. avg.	15-min avg conc. range	Alarms	Observations	Notified		
							No Alerts/Alarms			
							NO Alerts/Alaritis			
Notes:										
Day Totals: Air Mon. Use	e Only						1			
TVOC Action limit> 1.0 (0		Dust Action l	imit> 150 (15-min avg.)	0	†			
TVOC Alert limit> 0.75 (15-min avg.)	0	_		imit> 113 (15-min avg.)	0	<u> </u>			
Key:				·	-					
	P - Particulate		[TVOC] - Total VOC	Conc. [ppm]		Field Ro	epresentative: Kip Webber			

U - Upwind

C - Crosswind

D - Downwind

Y - Yellow R - Red

V - VOC

[Dust] - Particulate [ug/m3]

cont. - continuous monitoring

Date: 11/2/2015

Signed:

System C	Operations		General Observations								
Sampling Date	11/3/2015		Gei	neral Weather	Conditions						
System Start Time	cont.	_		 Sunny 							
System Stop Time	cont.			• 60s-70s							
		- '		• Light winds							
Total Hours Monitored	24	_			on of Site Activiti	es					
				General site p							
System Calibrations		calibrated	· ·	Excavation of	f water recharge ar	ea					
(Time/Status)	0745-0900	=	-								
			-								
			<u> </u>			System Alarm Log					
		Station			[TVOC/Dust]	[TVOC/Dust]	Total # of	Comments/	Site Person/Time		
Alarm Level	Time	No.	Alarm	Location	15-min. avg.	15-min avg conc. range	Alarms	Observations	Notified		
								No Alerts/Alarms			
Notes:			1					<u> </u>			
Notes:											
Day Totals: Air Mon. Use	e Only							7			
TVOC Action limit> 1.0 ((15-min avg.)	. 0			Dust Action l	imit> 150 (15-min avg.)	0				
TVOC Alert limit> 0.75 ((15-min avg.)	. 0			Dust Alert l	imit> 113 (15-min avg.)	0				
Key:		·	·	·			·				

G - Green

P - Particulate [TVOC] - Total VOC Conc. [ppm]

Y - Yellow U - Upwind [Dust] - Particulate [ug/m3]

R - Red C - Crosswind cont. - continuous monitoring

V - VOC D - Downwind

Field Representative: Kip Webber

Signed:

Date: 11/3/2015

System C	perations			General Observations						
Sampling Date	11/4/2015		Gei	General Weather Conditions						
System Start Time	cont.			• Sunny						
System Stop Time	cont.			• 60s						
				Light winds						
Total Hours Monitored	24				ion of Site Activitie					
						gement area (MMA)				
System Calibrations _ (Time/Status)		calibrated	l -	Excavation of	f water recharge are	ea .				
(Time/Status)_	0730-0900	=	l —							
			-							
						System Alarm Log				
		Station			[TVOC/Dust]	[TVOC/Dust]	Total # of	Comments/	Site Person/Time	
Alarm Level	Time	No.	Alarm	Location	15-min. avg.	15-min avg conc. range	Alarms	Observations	Notified	
								No Alerts/Alarms		
Notes:								1		
Trotes.										
								_		
Day Totals: Air Mon. Use										
TVOC Action limit> 1.0 (imit> 150 (15-min avg.)	0	1		
TVOC Alert limit> 0.75 (15-min avg.)	0			Dust Alert l	imit> 113 (15-min avg.)	0			
Key:										

 $\begin{array}{lll} G \mbox{-} Green & P \mbox{-} Particulate & [TVOC] \mbox{-} Total VOC Conc. [ppm] \\ Y \mbox{-} Yellow & U \mbox{-} Upwind & [Dust] \mbox{-} Particulate [ug/m3] \\ R \mbox{-} Red & C \mbox{-} Crosswind & cont. \mbox{-} continuous monitoring \\ \end{array}$

V - VOC D - Downwind

Field Representative: Kip Webber

Signed:

Date: 11/4/2015

System C	Operations		General Observations									
Sampling Date	11/5/2015		General Wea	her Conditions								
System Start Time	cont.		 Sunny 									
System Stop Time	cont.		• 60s									
			Light wir	ds								
Total Hours Monitored	24		General Desc	General Description of Site Activities								
				Pre-trenching activities within CES-2 area								
System Calibrations		alibrated	Constucti	Construction of material management area (MMA)								
(Time/Status)	0900-1000											
			-									
					System Alarm Log							
		Station		[TVOC/Dust]	[TVOC/Dust]	Total # of	Comments/	Site Person/Time				
Alarm Level	Time	No.	Alarm Location		15-min avg conc. range	Alarms	Observations	Notified Notified				
							No Alerts/Alarms					
Notes:				-		<u> </u>						
							T					
Day Totals: Air Mon. Use				r								
TVOC Action limit> 1.0 (<u> </u>	0			limit> 150 (15-min avg.)	0						
TVOC Alert limit> 0.75 (15-min avg.)	0		Dust Alert	limit> 113 (15-min avg.)	0						
Key:												
G - Green	P - Particulate		[TVOC] - Total V	OC Conc. [ppm]		Field Re	epresentative: Kip Webber	_				

U - Upwind

C - Crosswind

D - Downwind

Y - Yellow R - Red

V - VOC

[Dust] - Particulate [ug/m3]

cont. - continuous monitoring

Page 1 of __1__

Date:

11/5/2015

System	Operations			General Observations									
Sampling Date	11/6/2015		Gen	eral Weather	Conditions								
System Start Time	cont.	_		Partly sunny									
System Stop Time	e cont.	_		60s									
				Moderate wi									
Total Hours Monitored	1 24	_			tion of Site Activiti								
					g activities within (
System Calibrations		calibrated		Constuction	of material manage	ement area (MMA)							
(Time/Status)	0715-0830	=											
			<u> </u>			System Alarm Log							
		Station			[TVOC/Dust]	[TVOC/Dust]	Total # of	Comments/	Site Person/Time				
Alarm Level	Time	No.	Alarm	Location	15-min. avg.	15-min avg conc. range	Alarms	Observations	Notified				
								No Alerts/Alarms					
Notes:													
								7					
Day Totals: Air Mon. Us	•				T 5								
TVOC Action limit> 1.0 TVOC Alert limit> 0.75						imit> 150 (15-min avg.)	0	4					
Key:	(13-mm avg.)	- 0			Dust Alert I	imit> 113 (15-min avg.)	U						
•	D. Destant		ITMOC	T. (.1 V/O)			E:.11B	W.H.					
G - Green	P - Particulate				C Conc. [ppm]		Field R	epresentative: Kip Webber					
Y - Yellow	U - Upwind		[Dust] -	Particulate [ug/m3]			Signed:					
R - Red	C - Crosswind		cont c	ontinuous m	onitoring			Nige Webben					
V - VOC	D - Downwind	1						Just Newven					
								The state of the s					
								and the second second					
								Date: 11/6/2015	j				

System 0	Operations		General Observations									
Sampling Date	11/7/2015	_	Ge	neral Weather	Conditions							
System Start Time		_		Partly sunny								
System Stop Time	cont.	_		60s								
				Moderate win								
Total Hours Monitored	24	_			tion of Site Activiti							
0 . 0	4.11	111 . 1		Pre-trenching activities within CES-2 area Construction of material management area (MMA)								
System Calibrations (Time/Status)		calibrated		Construction of material management area (MMA) Installation of fencing for new exclusion zone in ISS area								
(Time/Status)	0713-0813	_	<u> </u>	Instalation of tenents for new exclusion zone in 155 area								
			-									
						System Alarm Log						
		Station			[TVOC/Dust]	[TVOC/Dust]	Total # of	Comm	ients/	Site Person/Time		
Alarm Level	Time	No.	Alarm	Location	15-min. avg.	15-min avg conc. range	Alarms	Observ	ations	Notified		
								No Alerts	s/Alarms			
Notes:	'				-		<u>'</u>			-		
D # 1 4 14 17	0.1							7				
Day Totals: Air Mon. Use TVOC Action limit> 1.0 (. 0			Dust Astion 1	imit> 150 (15-min avg.)	0	<u> </u> 				
TVOC Action mints 1.0 (imit> 130 (15-min avg.)	0	+				
Key:	(13-11111 avg.)	0			Dust Alert I	113 (13-11111 avg.)						
•	D. D. G. and A.		ITMOC	T 1 V.O.C	1 C []		F: .1.1 D					
	P - Particulate		-	-	Conc. [ppm]		rieid Ke	epresentative: Kip Webber				
Y - Yellow	U - Upwind		[Dust]	- Particulate [1	ug/m3]			Signed:				
R - Red	C - Crosswind		cont	continuous mo	onitoring			N:	Mebben			
V - VOC	D - Downwind	Į						The	revoc			
								7				
								Date:	11/7/2015			

System (Operations			General Observations								
Sampling Date	11/8/2015	=,	Ge	neral Weather	r Conditions							
System Start Time	cont.	_		Partly sunny								
System Stop Time	cont.	_		60s								
				Light winds								
Total Hours Monitored	24	_			tion of Site Activiti	ies						
G	A 11	111	<u> </u>	Sunday - no	work performed							
System Calibrations (Time/Status)	All systems N/A	canbrated	 									
(Time/Status)	IV/A	-	-									
			-									
						System Alarm Log						
		Station			[TVOC/Dust]	[TVOC/Dust]	Total # of	Comments/	Site Person/Time			
Alarm Level	Time	No.	Alarm	Location	15-min. avg.	15-min avg conc. range	Alarms	Observations	Notified			
								No Alerts/Alarms				
Notes:	l .		· ·	l.	1		l. I	1				
D	0.1							7				
Day Totals: Air Mon. Use		0			Don't Aution 1	::a 150 (15:)	0	4				
TVOC Action limit> 1.0 (TVOC Alert limit> 0.75 (imit> 150 (15-min avg.) imit> 113 (15-min avg.)	0	+				
Key:	(13-IIIII avg.)	. 0			Dust Alert I	11111 (13-11111 avg.)	0					
•	D. D. (1.1.1.)		ITMOC	T. (13/00			F: 11 D	W.H.				
	P - Particulate				C Conc. [ppm]		Field Re	epresentative: Kip Webber				
Y - Yellow	U - Upwind		[Dust]	- Particulate [ug/m3]			Signed:				
R - Red	C - Crosswind		cont	continuous m	onitoring			Dis Webben				
V - VOC	D - Downwind	Į						The previous	1			
								1				
								The second second second second	1			
								Data: 11/9/2015				

System C	Operations						General Obs	servations				
Sampling Date	11/9/2015		Gei	neral Weather	Conditions							
System Start Time	cont.			Partly cloudy								
System Stop Time	cont.			40s-60s								
				Light winds								
Total Hours Monitored	24				ion of Site Activiti							
0 (0.17)	4.11	111 . 1		Pre-trenching activities within CES-2 area Conserved to be considered within CES 2 area.								
System Calibrations (Time/Status)		alibrated	-	Crane set up by Coastal to begin sheet piling within CES-2 area								
(Time/Status)	0730-0843		-									
			-									
			<u> </u>			System Alarm Log						
		Station			[TVOC/Dust]	[TVOC/Dust]	Total # of	Comments/	Site Person/Time			
Alarm Level	Time	No.	Alarm	Location	15-min. avg.	15-min avg conc. range	Alarms	Observations	Notified			
								No Alerts/Alarms				
Notes:									<u> </u>			
- 1.0.00												
								1				
Day Totals: Air Mon. Use												
TVOC Action limit> 1.0 (0				mit> 150 (15-min avg.)	0					
TVOC Alert limit> 0.75 (15-min avg.)	0			Dust Alert II	mit> 113 (15-min avg.)	0					
Key:												
G - Green	P - Particulate		[TVOC] - Total VOC	Conc. [ppm]		Field Re	presentative: Kip Webber				
Y - Yellow	U - Upwind		[Dust] -	Particulate [u	ig/m3]			Signed:				
R - Red	C - Crosswind		cont c	continuous mo	nitoring			N:-11/11				
V - VOC	D - Downwind							Dig Webber				
								Deter 11/0/2015	-			

System	Operations		General Observations									
Sampling Date	11/10/2015	=	Gei	neral Weather	Conditions							
System Start Time	cont.	=		Cloudy								
System Stop Time	cont.	=		40s-50s								
					rain in the afternoon							
Total Hours Monitored	24	=.			ion of Site Activit							
	Pre-trenching activities within CES-2 area											
System Calibrations (Time/Status)		calibrated	-	Mobilization of crane by Coastal for sheet piling in CES-2 area								
(Time/Status)	0/13-0813	=										
			l —									
			II.			System Alarm Log						
		Station			[TVOC/Dust]	[TVOC/Dust]	Total # of	Comments/	Site Person/Time			
Alarm Level	Time	No.	Alarm	Location	15-min. avg.	15-min avg conc. range	Alarms	Observations	Notified			
Y	2041-2207	2	P	U		113.25-118.41	4	No active work being conducted on-site. Elevated	N/A			
								readings due to meteorological conditions (high				
								moisture/mist)				
Notes:			1									
Tioles.												
								_				
Day Totals: Air Mon. Us												
TVOC Action limit> 1.0						imit> 150 (15-min avg.)	0					
TVOC Alert limit> 0.75	(15-min avg.)	0			Dust Alert l	imit> 113 (15-min avg.)	4					
Key:												
G - Green	P - Particulate		[TVOC] - Total VOC	Conc. [ppm]		Field R	Representative: Kip Webber				
Y - Yellow	U - Upwind		[Dust] -	Particulate [1g/m3]			Signed:				
R - Red	C - Crosswind		cont c	continuous me	onitoring			N:-11/11				
V - VOC	D - Downwind				-			Nig Webben				
								Date: 11/10/2015				

System (Operations						General Ob	oservations			
Sampling Date	11/11/2015	_	Gei	neral Weather	Conditions						
System Start Time	cont.	_		Rainy							
System Stop Time	cont.			40s							
		- '		Moderate wir	nds						
Total Hours Monitored	24	_	Gei	General Description of Site Activities							
				Pre-trenching activities within ISS area							
System Calibrations		calibrated	•	Live taps performed on discovered utility lines to ensure they are inactive							
(Time/Status)	1015-1130	=	I								
			<u> </u>			System Alarm Log					
		Station			[TVOC/Dust]	[TVOC/Dust]	Total # of	Comments/	Site Person/Time		
Alarm Level	Time	No.	Alarm	Location	15-min. avg.	15-min avg conc. range	Alarms	Observations	Notified		
Y	0002	2	P	U	122.07	15 mm avg cone. range	1	No active work being conducted on-site. Elevated	N/A		
-	0002		-		122.07			readings due to meteorological conditions (high	10/11		
								moisture/mist)			
Notes:	<u> </u>	<u> </u>	1 1	<u> </u>	<u> </u>						
Trotes.											
Day Totals: Air Mon. Use Only											
TVOC Action limit> 1.0					Dust Action l	imit> 150 (15-min avg.)	0				
TVOC Alert limit> 0.75	ΓVOC Alert limit> 0.75 (15-min avg.) 0 Dust Alert limit> 113 (15-min avg.) 1										
Key:									<u> </u>		

G - Green

Y - Yellow

R - Red

V - VOC

P - Particulate

C - Crosswind

D - Downwind

U - Upwind

[TVOC] - Total VOC Conc. [ppm]

[Dust] - Particulate [ug/m3]

cont. - continuous monitoring

Field Representative: Kip Webber Signed:

Date: 11/11/2015

Syst	em Operations		General Observations									
Sampling I	Date 11/12/2015	_	Ger	neral Weather	Conditions							
System Start T		_		Cloudy								
System Stop T	ime cont.	_		40s-50s								
					pockets of rain in							
Total Hours Monito	ored 24	=			tion of Site Activiti							
				Pre-trenching activities within ISS area								
System Calibrati	ions All systems of tus) 0715-0830	calibrated		 Excavation of PCB soils in A5 area Sheet piles driven within CES-2 area 								
(Time/Sta	iius) 0/13-0830	=	<u> </u>	Sheet phes d	riven within CES-2	z area						
			-									
			<u> </u>			System Alarm Log						
		Station			[TVOC/Dust]	[TVOC/Dust]	Total # of	Comments/	Site Person/Time			
Alarm Level	Time	No.	Alarm	Location	15-min. avg.	15-min avg conc. range	Alarms	Observations	Notified			
								No Alerts/Alarms				
								140 7 HOLOS/7 Harrins				
NY .												
Notes:												
Day Totals: Air Mon.	. Use Only							1				
TVOC Action limit>	1.0 (15-min avg.)	0			Dust Action 1	imit> 150 (15-min avg.)	0					
TVOC Alert limit> 0	.75 (15-min avg.)	0			Dust Alert 1	imit> 113 (15-min avg.)	0					
Key:												
G - Green	P - Particulate		[TVOC] - Total VOC	Conc. [ppm]		Field Re	epresentative: Kip Webber				
Y - Yellow	U - Upwind		[Dust] -	- Particulate [ug/m3]			Signed:				
R - Red	C - Crosswind			continuous m	_							
V - VOC	D - Downwind				6			Jip Webben				
v - voc	D - Downwillu											
								Date: 11/12/2015	-			

System	Operations		General Observations								
Sampling Date	e 11/13/2015	_	Gei	neral Weather	Conditions						
System Start Time		_		Partly sunny							
System Stop Time	e cont.	_		Mid 50s							
				Moderate wi							
Total Hours Monitored	1 24	_			tion of Site Activit						
				Pre-trenching activities within ISS area							
System Calibrations		calibrated	·	Sheet piles d	riven within CES-2	2 area					
(Time/Status)	0730-0910	_	I -								
			l —								
			<u> 11 </u>			System Alarm Log					
		Station			[TVOC/Dust]	[TVOC/Dust]	Total # of	Comments/	Site Person/Time		
Alarm Level	Time	No.	Alarm	Location	15-min. avg.	15-min avg conc. range	Alarms	Observations	Notified		
								No Alerts/Alarms			
Notes:											
110103.											
								-			
Day Totals: Air Mon. Us					T			<u> </u>			
TVOC Action limit> 1.0						imit> 150 (15-min avg.)	0	-			
TVOC Alert limit> 0.75	(15-min avg.)	- 0			Dust Alert I	imit> 113 (15-min avg.)	0				
Key:											
G - Green	P - Particulate		[TVOC] - Total VOC	Conc. [ppm]		Field Re	epresentative: Kip Webber			
Y - Yellow	U - Upwind		[Dust] -	Particulate [ug/m3]			Signed:			
R - Red	C - Crosswind		cont c	continuous me	onitoring			N. 1.11			
V - VOC	D - Downwind	İ			Č			Nige Webber			
	2 Downwind	-									
								Date: 11/13/2015			

System	m Operations			General Observations									
Sampling Da	ate 11/14/2015	_	Ge	neral Weather	Conditions								
System Start Tir		_	-	Partly sunny									
System Stop Tir	me cont.	_		Mid 50s									
				Moderate win									
Total Hours Monitor	red 24	_	Ge	neral Descript	tion of Site Activiti	ies							
Create are Calibratia	ons All systems	ال معمسانات	<u> </u>	Pre-trenching activities outside of CES-2 area									
System Calibratio	us) 1245 - 1330												
(Time/State	1243 - 1330	=											
						System Alarm Log							
		Station			[TVOC/Dust]	[TVOC/Dust]	Total # of	Comments/	Site Person/Time				
Alarm Level	Time	No.	Alarm	Location	15-min. avg.	15-min avg conc. range	Alarms	Observations	Notified				
								No Alerts/Alarms					
				-									
Notes:				-					,				
Day Totala, Air Man	Una Onla							٦					
Day Totals: Air Mon. TVOC Action limit> 1		- 0			Duet Action 1	imit> 150 (15-min avg.)	0	+					
TVOC Alert limit> 0.7						imit> 130 (15-min avg.)	0	†					
Key:	(3 (13 11111 4 + 6.)				Bust Hert I	113 (13 mm uvg.)							
G - Green	P - Particulate		ITVOC	Total VOC	Conc. [ppm]		Field Pa	epresentative: Kip Webber					
							rield K						
Y - Yellow	U - Upwind			- Particulate [u	-			Signed:					
R - Red	C - Crosswind		cont	continuous mo	onitoring			Rightebben					
V - VOC	D - Downwind	i						1 of house					
								Date:	15				

System	Operations		General Observations									
Sampling Date	11/15/2015	_	Gen	eral Weather	Conditions							
System Start Time	e cont.	_	• 1	Partly sunny								
System Stop Time	cont.	_	- 4	40s-50s								
				Light winds								
Total Hours Monitored	1 24	_			tion of Site Activiti	ies						
			- 5	Sunday - no	work performed							
System Calibrations		calibrated	I									
(Time/Status)	N/A	_	II									
			_			System Alarm Log						
		Station			[TVOC/Dust]	[TVOC/Dust]	Total # of	Comments/	Site Person/Time			
Alarm Level	Time	No.	Alarm	Location	15-min. avg.	15-min avg conc. range	Alarms	Observations	Notified			
								No Alerts/Alarms				
	1											
Notes:					1							
110103.												
								_				
Day Totals: Air Mon. Us	•				T							
TVOC Action limit> 1.0						imit> 150 (15-min avg.)	0	4				
TVOC Alert limit> 0.75	(15-min avg.)	0			Dust Alert I	imit> 113 (15-min avg.)	0					
Key:												
G - Green	P - Particulate		[TVOC]	- Total VOC	Conc. [ppm]		Field R	epresentative: Kip Webber				
Y - Yellow	U - Upwind		[Dust] -	Particulate [1	ug/m3]			Signed:				
R - Red	C - Crosswind		cont co	ontinuous mo	onitoring			N-11/1				
V - VOC	D - Downwind	l						Nige Webben				
								The second second second				
								Date: 11/15/2015				

Proactive by Design

APPENDIX E

GROUNDWATER ANALYTICAL DATA

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

David E Leone GZA GeoEnvironmental, Inc. 249 Vanderbilt Avenue Norwood, MA 02062

RE: Wynn Everett - MCP (01.0171521.41 Task 2) ESS Laboratory Work Order Number: 1510111

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director REVIEWED

By ESS Laboratory at 3:02 pm, Oct 09, 2015

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with NELAC Standards, A2LA and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

Service

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1510111

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

SAMPLE RECEIPT

The following samples were received on October 05, 2015 for the analyses specified on the enclosed Chain of Custody Record.

To achieve CAM compliance for MCP data, ESS Laboratory has performed and reviewed all QA/QC Requirements and Performance Standards listed in each method. Holding times and preservation have also been reviewed. All CAM requirements have been achieved unless noted in the project narrative.

Each method has been set-up in the laboratory to reach required MCP standards. The methods for aqueous VOA and Soil Methanol VOA have known limitations for certain analytes. The regulatory standards may not be achieved due to these limitations. In addition, for all methods, matrix interferences, dilutions, and %Solids may elevate method reporting limits above regulatory standards. ESS Laboratory can provide, upon request, a Data Checker (regulatory standard comparison spreadsheet) electronic deliverable which will highlight these exceedances.

Question I: All samples for Metals were analyzed for a subset of the required MCP list per the client's request.

Lab Number	Sample Name	<u>Matrix</u>	<u>Analysis</u>
1510111-01	W-4	Ground Water	6010C, 7010, 7470A
1510111-02	RIZ-105	Ground Water	6010C, 7010, 7470A
1510111-03	B-MW-207	Ground Water	6010C, 7010, 7470A
1510111-04	RIZ-5	Ground Water	6010C, 7010, 7470A

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS Laboratory Work Order: 1510111

PROJECT NARRATIVE

Dissolved Metals

CJ50625-BSD1 Blank Spike recovery is above upper control limit (B+).

Mercury (143% @ 80-120%)

CJ50625-BSD1 Relative percent difference for duplicate is outside of criteria (D+).

Mercury (37% @ 20%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1510111

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015D - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1510111

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

MassDEP Analytical Protocol Certification Form

	MADE	P RTN:				_					
This	form provid	es certific	cation for the follo	wing o	data set: 1510111-01 th	rouș	gh 1510111-04				
Mat	rices: () Gr	round Wa	ter/Surface Water		() Soil/Sediment	() Drinking Water	() Aiı	r () Other:		
CA	M Protocol ((check al	l that apply belov	v):							
()	8260 VOC CAM II A	(Σ	X) 7470/7471 Hg CAM III B	() MassDEP VPH CAM IV A	() 8081 Pesticides CAM V B	()) 7196 Hex Cr CAM VI B	() MassDEP APE CAM IX A	ĺ
()	8270 SVOC CAM II B	(X	7010 Metals CAM III C	() MassDEP EPH CAM IV B	() 8151 Herbicides CAM V C	()) 8330 Explosives CAM VIII A	() TO-15 VOC CAM IX B	
(X)	6010 Metals CAM III A	() 6020 Metals CAM III D	() 8082 PCB CAM V A	() 6860 Perchlorate CAM VIII B	()) 9014 Total Cyani CAM VI A	de/PAC	
			Affirmative res	ponse	s to questions A throi	igh .	F are required for P r	esumpti	ive Certainty'statu	s	
A		-					on the Chain-of-Custo		•	Yes (X) No ()
В		_					d/analyzed within mether in the selected CA!		•	Yes (X) No ()
С	Were all req			-	tical response actions and and non-conforman	-	ified in the selected CA	AM proto	ocol(s)	Yes (X) No ()
D	Does the lab	oratory r	eport comply with	all the	e reporting requiremen	ts sp	ecified in the CAM VI		ality	Yes (X) No ()
Е		-	•		•	-	ting of Analytical Data at significant modificat		(Dafar	Vac () Na (`
E	-	-	•		cant modifications).	Itiiot	at significant modificat	11011(8): ((Kelei	Yes () No (,
				-	mplete analyte list repo	orted	for each method?			Yes () No ()
F	* *				rformance standard no esponses to Questions		nformances identified rough E)?	and eval	luated	Yes (X) No ()
							re required for P resui				
G	_	_					in the selected CAM p			Yes (X) No ()*	
				•	e Certainty'status may n 10 CMR 40. 1056 (2)(k)		ecessarily meet the data t WSC-07-350	ı usabilit	ty and		
Н	_	_			in the CAM protocol(s					Yes () No ($^{\Sigma}$	5 *
I		-	•		e list specified in the se					Yes () No (ŕ
*Al	l negative re	sponses	must be addresse	d in a	n attached laboratory	nai	rrative.				

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.

Signature: _____ Date: October 09, 2015
Printed Name: Laurel Stoddard Position: Laboratory Director

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

Client Sample ID: W-4

Date Sampled: 10/01/15 13:25

Percent Solids: N/A

ESS Laboratory Work Order: 1510111 ESS Laboratory Sample ID: 1510111-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Dissolved Metals

Analyte Arsenic	Results (MRL) 435 (125)	<u>MDL</u>	Method 7010	<u>Limit</u>	<u>DF</u> 50	Analyst KJK	Analyzed 10/08/15 21:41	<u>I/V</u> 50	<u>F/V</u> 25	Batch CJ50623
Barium	45.7 (25.0)		6010C		1	KJK	10/07/15 4:20	50	25	CJ50623
Cadmium	4.9 (2.5)		6010C		1	KJK	10/07/15 18:04	50	25	CJ50623
Chromium	ND (10.0)		6010C		1	KJK	10/07/15 4:20	50	25	CJ50623
Lead	ND (10.0)		6010C		1	KJK	10/07/15 4:20	50	25	CJ50623
Mercury	ND (0.20)		7470A		1	KJK	10/06/15 18:07	20	40	CJ50625
Selenium	ND (5.0)		7010		1	KJK	10/08/15 1:40	50	25	CJ50623
Silver	ND (5.0)		6010C		1	KJK	10/07/15 4:20	50	25	CJ50623

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

Client Sample ID: RIZ-105 Date Sampled: 10/01/15 14:45

Percent Solids: N/A

ESS Laboratory Work Order: 1510111 ESS Laboratory Sample ID: 1510111-02

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Dissolved Metals

Analyte Arsenic	Results (MRL) 9.3 (2.5)	MDL	Method 7010	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 10/08/15 21:46	<u>I/V</u> 50	<u>F/V</u> 25	Batch CJ50623
Barium	30.9 (25.0)		6010C		1	KJK	10/07/15 4:26	50	25	CJ50623
Cadmium	ND (2.5)		6010C		1	KJK	10/07/15 18:09	50	25	CJ50623
Chromium	ND (10.0)		6010C		1	KJK	10/07/15 4:26	50	25	CJ50623
Lead	ND (10.0)		6010C		1	KJK	10/07/15 4:26	50	25	CJ50623
Mercury	ND (0.20)		7470A		1	KJK	10/06/15 18:10	20	40	CJ50625
Selenium	16.9 (5.0)		7010		1	KJK	10/08/15 1:46	50	25	CJ50623
Silver	ND (5.0)		6010C		1	KJK	10/07/15 4:26	50	25	CJ50623

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

Client Sample ID: B-MW-207 Date Sampled: 10/01/15 16:10

Percent Solids: N/A

ESS Laboratory Work Order: 1510111 ESS Laboratory Sample ID: 1510111-03

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Dissolved Metals

Analyte Arsenic	Results (MRL) 4.7 (2.5)	MDL	<u>Method</u> 7010	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 10/08/15 21:52	<u>I/V</u> 50	F/V 25	Batch CJ50623
Barium	40.9 (25.0)		6010C		1	KJK	10/07/15 4:30	50	25	CJ50623
Cadmium	ND (2.5)		6010C		1	KJK	10/07/15 18:26	50	25	CJ50623
Chromium	ND (10.0)		6010C		1	KJK	10/07/15 4:30	50	25	CJ50623
Lead	ND (10.0)		6010C		1	KJK	10/07/15 4:30	50	25	CJ50623
Mercury	ND (0.20)		7470A		1	KJK	10/06/15 18:13	20	40	CJ50625
Selenium	5.1 (5.0)		7010		1	KJK	10/08/15 1:51	50	25	CJ50623
Silver	ND (5.0)		6010C		1	KJK	10/07/15 4:30	50	25	CJ50623

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

Client Sample ID: RIZ-5 Date Sampled: 10/01/15 18:00

Percent Solids: N/A

ESS Laboratory Work Order: 1510111 ESS Laboratory Sample ID: 1510111-04

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Dissolved Metals

Analyte Arsenic	Results (MRL) 8.2 (2.5)	MDL	Method 7010	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 10/08/15 21:58	<u>I/V</u> 50	<u>F/V</u> 25	Batch CJ50623
Barium	88.3 (25.0)		6010C		1	KJK	10/07/15 4:34	50	25	CJ50623
Cadmium	3.8 (2.5)		6010C		1	KJK	10/07/15 18:31	50	25	CJ50623
Chromium	ND (10.0)		6010C		1	KJK	10/07/15 4:34	50	25	CJ50623
Lead	ND (10.0)		6010C		1	KJK	10/07/15 4:34	50	25	CJ50623
Mercury	ND (0.20)		7470A		1	KJK	10/06/15 18:15	20	40	CJ50625
Selenium	ND (5.0)		7010		1	KJK	10/08/15 1:57	50	25	CJ50623
Silver	ND (5.0)		6010C		1	KJK	10/07/15 4:34	50	25	CJ50623

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS Laboratory Work Order: 1510111

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
ration y co	Nesuit				Nesuit	/UNLC	LIIIIG	NI D	LIIIIC	Quantie
		[Dissolved M	etals						
Batch CJ50623 - 3005A/200.7										
Blank										
Arsenic	ND	2.5	ug/L							
Barium	ND	25.0	ug/L							
Cadmium	ND	2.5	ug/L							
Chromium	ND	10.0	ug/L							
Lead	ND	10.0	ug/L							
Selenium	ND	5.0	ug/L							
Silver	ND	5.0	ug/L							
LCS										
Arsenic	254	50.0	ug/L	250.0		102	80-120			
Barium	252	25.0	ug/L	250.0		101	80-120			
Cadmium	125	2.5	ug/L	125.0		100	80-120			
Chromium	250	10.0	ug/L	250.0		100	80-120			
Lead	250	10.0	ug/L	250.0		100	80-120			
Selenium	516	100	ug/L	500.0		103	80-120			
Silver	122	5.0	ug/L	125.0		98	80-120			
LCS Dup										
Arsenic	251	50.0	ug/L	250.0		100	80-120	1	20	
Barium	246	25.0	ug/L	250.0		98	80-120	3	20	
Cadmium	125	2.5	ug/L	125.0		100	80-120	0.3	20	
Chromium	243	10.0	ug/L	250.0		97	80-120	3	20	
Lead	247	10.0	ug/L	250.0		99	80-120	1	20	
Selenium	521	100	ug/L	500.0		104	80-120	1	20	
Silver	119	5.0	ug/L	125.0		95	80-120	3	20	
Batch CJ50625 - 245.1/7470A										
Blank										
Mercury	ND	0.20	ug/L							
LCS										
Mercury	5.90	0.20	ug/L	6.000		98	80-120			
LCS Dup										
Mercury	8.58	0.20	ug/L	6.000		143	80-120	37	20	B+, D+

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS Laboratory Work Order: 1510111

Notes and Definitions

U Analyte included in the analysis, but not detected	
--	--

D+ Relative percent difference for duplicate is outside of criteria (D+).

D Diluted.

B+ Blank Spike recovery is above upper control limit (B+).

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference
MDL Method Detection Limit
MRL Method Reporting Limit
LOD Limit of Detection
LOQ Limit of Quantitation
DL Detection Limit
I/V Initial Volume

Final Volume

§ Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range.

Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

F/V

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1510111

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc. Client Project ID: Wynn Everett - MCP

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp-services/labcert/documents/AllLabs.xls

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.depweb.state.pa.us/portal/server.pt/community/labs/13780/laboratory accreditation program/590095

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

C	-1-		Cooler	Docoint	Chacklist
Sam	שוע	anu	COOLE	Keceibr	Checklist

Client: GZA GeoEnvironmental, Inc.

Client Project ID:

ESS Courier Shipped/Delivered Via:

ESS Project ID: 15100111

Date Project Due: 10/12/15 15/13/15 Days For Project: 5 Day

JE 1015/15

DJ 10/6/15

4 day TAT per CMT

Yes Yes

N/A

No

Yes

No

Yes|No

10/9/15

Items to be checked upon receipt:

1. Air Bill Manifest Present?

Air No.:

2. Were Custody Seals Present?

3. Were Custody Seals Intact?

4. Is Radiation count < 100 CPM?

5. Is a cooler present?

Cooler Temp: 3.2 Iced With: Ice

6. Was COC included with samples?

7. Was COC signed and dated by client?

8. Does the COC match the sample

9. Is COC complete and correct?

* No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

10. Are the samples properly preserved?

11. Proper sample containers used?

12. Any air bubbles in the VOA vials?

13. Holding times exceeded?

14. Sufficient sample volumes?

15. Any Subcontracting needed?

16. Are ESS labels on correct containers? Yes No

17. Were samples received intact?

ESS Sample IDs: ____

Sub Lab: _____

Analysis: TAT: _____

18. Was there need to call project manager to discuss status? If yes, please explain.

Who was	called?:	

By whom? _____

Sample Number	Properly Preserved	Container Type	# of Containers	Preservative	
1	Yes	250 ml Plastic	1	HNO3	
2	Yes	250 ml Plastic	1	HNO3	
3	Yes	250 ml Plastic	1	HNO3	
4	7 Yes	250 ml Plastic	, , 1	HNO3	
Completed By: May		ate/Time: <i> 6 </i>	5/15 1753		
Reviewed By:	Da Da	ate/Time: <u>/0/<i>5//</i></u>	15 1935		

CUSTODY SEAL

www.essvial.com 800-233-8425

Date: 10/2/15
Signature: Man Faithly

	ESS Laboratory				CHAIN OF CUSTODY	CUST	Ydo.	ш	ESS Lab#		1110/51	
	CO Cabolados J	y neering Inc		Turn Time	✓ Standard Other				&	Renorting Limits -	its - (50-3	_
DIVISION OF 1	Meisch Ligi	neching, inc.		Regulatory S	Regulatory State: (MA) RI CT NH NJ NY ME	ME Other	3r		-	Sim lod	}	
185 Frances Tel. (401)46	3 Avenue, Cr. 1-7181 Fax	185 Frances Avenue, Clausion 18, 02313-2217 Tel. (401)461-7181 Fax (401)461-4486		Is this project for any MA-MCP Navy	of the following:(please ci USACE CT DEP	rde) Other			Elect	Electonic Deliverables	bles (Excel) Access (PDF	(½)
Co. Name	Co. Name	-		Project #	1 Task 2 Project Name Evert	日のことは	_1_			517		
Contact Person	Contact Person) Autental		Proj. Location	Koly Vo				sisyli	1 424		
1 7		Avenue	City, State Norwood, MA	KW,			PO#			0 (ne		
Tel. 10			email: Janide. (rune	Ł	egza.com					55 55		
7.1	Date	Collection Time	Grab -G Composite-C	L.	Sample ID	Pres Code	# of Containers	Type of Container	Vol of Container	קי לכ		
	51/1/01	13:25	P	CHS	77	4	~	plostic	250 ml	X		
C	10/1/15	↓	9	3	PLZ-105	4	_	plastic	Tm 627	×		
((10/1/15	—	7	GE	B/MW-207	2	-	plastic	250ml	×		
r _o j	21/1/01	18:00	6	GW	5-212	7	-	plassic	250 mL	×		
										-		
Container Type: P.	-Poly G-Glass AG-/	Container Type: P-Poly G-Glass AG-Amber Glass S-Sterile V-VOA	/-V0A		Matrix: S-Soil SD-Soild D-Sludge WW-Wastewater GW-Groundwater SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter	/W-Wastewater	GW-Groundwa	ter SW-Surfac	e Water DW-Dr	inking Water (O-Oil W-Wipes F-Filter	
Cooler Present	sent	Yes	2	Internal Use Only	e Only Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5-NaOH, 6-MeOH, 7-Asorbic Acid, 8-ZnAct, 9-	le: 1-NP, 2-H	ICI, 3-H2SO4,	4-HNO3, 5-N	аОН, 6-МеО	1, 7-Asorbic	Acid, 8-ZnAct, 9-	
Seals Intact	Yes	No NA:]	[4-Pickup	Sampled by:	: Haria	1	Firstenber			į į	
Cooler Ten	 perature:	3.20	Cholory	[] Technician_	Comments:	'	44	XCD CAR	Criter	2. 0.45 pm in	in line field filter	filter.
Relinguished by: (4	Signature. Date & Ti	Ħ	Received by: (Sig	scelved by: (Signature, Date & Time)		Relinquished	喜	Date & Time)	1	Received by: (Signa	Signature, Date & Time)	
Man	Man's Justiling			12	75 (+.1(- 2)/ /9/	7.0	7	10/2/12 1750 Mg	051
10 / 2/15 Relinquished by: (Si	10/2/15 1 Relinquished by: (Signature, Date & Time)	3:00	Received by: (Sig	Received by: (Signature, Date & Time)	(6	Keinquishe	Keindquished by: (Signature, Date & Time)	Date & Time)		Received by	Received by (Signature, Date & Time)	
										7		
o o b circling MA-MCP, client acknowledges sampels were	MCP, client acknowle	edges sampels were		A bodbow	Please fax to the laboratory all changes to Chain of Custody	changes to	Chain of Cus	stody Results				
ope up acced in acc	ordance with MADEI	P CAM VIIA	Кероп	Кероп (метлоч Бідіїк								